Photonic band-gap waveguide microcavities: Monorails and air bridges

被引:22
作者
Lim, KY [1 ]
Ripin, DJ
Petrich, GS
Kolodziejski, LA
Ippen, EP
Mondol, M
Smith, HI
Villeneuve, PR
Fan, S
Joannopoulos, JD
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 1999年 / 17卷 / 03期
关键词
D O I
10.1116/1.590717
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Photonic band-gap monorail and air-bridge waveguide microcavities, operating at the wavelength regime of 1550 nm, are fabricated using GaAs-based compound semiconductors. The fabrication process involves gas-source molecular beam epitaxy, electron-beam lithography, reactive ion etching, and thermal wet oxidation of Al0.93Ga0.07As. The fabrication of the air-bridge microcavity, in particular, also entails the sacrificial wet etch of AlxOy to suspend the micromechanical structure. The monorail and air-bridge microcavities have been optically characterized and the transmission spectra exhibit resonances in the 1550 nm wavelength regime. Tunability of the resonant wavelength is demonstrated through changing the defect size in the one-dimensional photonic crystal. The quality factors (Q) of the microcavities are about 140 for the monorail and 230 for the air bridge, respectively. (C) 1999 American Vacuum Society. [S0734-211X(99)03303-X].
引用
收藏
页码:1171 / 1174
页数:4
相关论文
共 50 条
[31]   Theory and applications of photonic band-gap materials [J].
Yang, HYD .
ELECTROMAGNETICS, 1999, 19 (03) :223-224
[32]   EXISTENCE OF A PHOTONIC BAND-GAP IN 2 DIMENSIONS [J].
MEADE, RD ;
BROMMER, KD ;
RAPPE, AM ;
JOANNOPOULOS, JD .
APPLIED PHYSICS LETTERS, 1992, 61 (04) :495-497
[33]   LOCALIZATION OF SUPERRADIANCE NEAR A PHOTONIC BAND-GAP [J].
JOHN, S ;
QUANG, T .
PHYSICAL REVIEW LETTERS, 1995, 74 (17) :3419-3422
[34]   Band-gap engineering of amorphous photonic materials [J].
Wang, YQ ;
Jian, SS .
PHYSICS LETTERS A, 2006, 352 (06) :550-553
[35]   Photonic band-gap optimisation in inverted FCC photonic crystals [J].
Doosje, M ;
Hoenders, BJ ;
Knoester, J .
QUANTUM OPTICS OF SMALL STRUCTURES, 2000, 51 :17-22
[36]   Photonic band-gap enhanced second-harmonic generation in a planar lithium niobate waveguide [J].
Deng, C. ;
Haus, J. W. ;
Sarangan, A. ;
Mahfoud, A. ;
Sibilia, C. ;
Scalora, M. ;
Zheltikov, A. .
LASER PHYSICS, 2006, 16 (06) :927-947
[37]   Influence of a cylindrical waveguide with a concentric photonic band-gap wall on interatomic resonance energy transfer [J].
Nguyen Van Phuoc ;
Nguyen Dung Chinh ;
Tran Minh Hien .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2021, 54 (11)
[38]   The band structure of photonic band-gap crystals with superconducting elements [J].
Berman, Oleg L. ;
Lozovik, Yurii E. ;
Eiderman, Sergey L. ;
Coalson, Rob D. .
LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 :997-+
[39]   Giant refractive-index enhancement in dispersive polaritonic band-gap and photonic band-gap materials [J].
Singh, MR .
PHYSICAL REVIEW A, 2004, 69 (02) :7
[40]   Chromatic dispersion and DGD measurement of air-guiding photonic band-gap fibers [J].
Liu, Zhigang ;
Zheng, Xiaoping ;
Yu, Jinglong ;
Zhang, Hanyi ;
Guo, Yili ;
Zhou, Bingkin .
OPTOELETRONIC MATERIALS AND DEVICES, PTS 1 AND 2, 2006, 6352