Photonic band-gap waveguide microcavities: Monorails and air bridges

被引:22
作者
Lim, KY [1 ]
Ripin, DJ
Petrich, GS
Kolodziejski, LA
Ippen, EP
Mondol, M
Smith, HI
Villeneuve, PR
Fan, S
Joannopoulos, JD
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 1999年 / 17卷 / 03期
关键词
D O I
10.1116/1.590717
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Photonic band-gap monorail and air-bridge waveguide microcavities, operating at the wavelength regime of 1550 nm, are fabricated using GaAs-based compound semiconductors. The fabrication process involves gas-source molecular beam epitaxy, electron-beam lithography, reactive ion etching, and thermal wet oxidation of Al0.93Ga0.07As. The fabrication of the air-bridge microcavity, in particular, also entails the sacrificial wet etch of AlxOy to suspend the micromechanical structure. The monorail and air-bridge microcavities have been optically characterized and the transmission spectra exhibit resonances in the 1550 nm wavelength regime. Tunability of the resonant wavelength is demonstrated through changing the defect size in the one-dimensional photonic crystal. The quality factors (Q) of the microcavities are about 140 for the monorail and 230 for the air bridge, respectively. (C) 1999 American Vacuum Society. [S0734-211X(99)03303-X].
引用
收藏
页码:1171 / 1174
页数:4
相关论文
共 50 条
[21]   Surface modes and loss in air-core photonic band-gap fibers [J].
Allan, DC ;
Borrelli, NF ;
Gallagher, MT ;
Müller, D ;
Smith, CM ;
Venkataraman, N ;
West, JA ;
Zhang, PH ;
Koch, KW .
PHOTONIC CRYSTAL MATERIALS AND DEVICES, 2003, 5000 :161-174
[22]   Air-core photonic band-gap fibers: the impact of surface modes [J].
Saitoh, K ;
Mortensen, NA ;
Koshiba, M .
OPTICS EXPRESS, 2004, 12 (03) :394-400
[23]   Soliton pulse compression in air-core photonic band-gap fibre [J].
Sarma, Pranami ;
Phukan, Devika ;
Barua, Anurup Gohain .
PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (03)
[24]   Soliton pulse compression in air-core photonic band-gap fibre [J].
Pranami Sarma ;
Devika Phukan ;
Anurup Gohain Barua .
Pramana, 97
[25]   Photonic band gap waveguide devices [J].
Charlton, MDB ;
Parker, GJ .
MATERIALS AND DEVICES FOR SILICON-BASED OPTOELECTRONICS, 1998, 486 :87-94
[26]   Photonic band-gap inhibition of modulational instabilities [J].
Gomila, D ;
Zambrini, R ;
Oppo, GL .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :253904-1
[27]   Band-Gap Photonic Structures in Dichromate Pullulan [J].
Savic-Sevic, Svetlana ;
Pantelic, Dejan ;
Nikolic, Marko ;
Jelenkovic, Branislav .
MATERIALS AND MANUFACTURING PROCESSES, 2009, 24 (10-11) :1127-1129
[28]   Characteristics of lasers with photonic band gap structures and microcavities [J].
Ivanov, PS ;
Degtev, A ;
Nefedov, IS ;
Morozov, YA ;
Sukhoivanov, IA .
LFNM'2001: PROCEEDINGS OF THE 3RD INTERNATIONAL WORKSHOP ON LASER AND FIBER-OPTICAL NETWORKS MODELING, 2001, :2-4
[29]   Highly dispersive photonic band-gap prism [J].
Lin, SY ;
Hietala, VM ;
Wang, L ;
Jones, ED .
OPTICS LETTERS, 1996, 21 (21) :1771-1773
[30]   Microfluidic tunable photonic band-gap device [J].
Domachuk, P ;
Nguyen, HC ;
Eggleton, BJ ;
Straub, M ;
Gu, M .
APPLIED PHYSICS LETTERS, 2004, 84 (11) :1838-1840