Photonic band-gap waveguide microcavities: Monorails and air bridges

被引:22
|
作者
Lim, KY [1 ]
Ripin, DJ
Petrich, GS
Kolodziejski, LA
Ippen, EP
Mondol, M
Smith, HI
Villeneuve, PR
Fan, S
Joannopoulos, JD
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 1999年 / 17卷 / 03期
关键词
D O I
10.1116/1.590717
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Photonic band-gap monorail and air-bridge waveguide microcavities, operating at the wavelength regime of 1550 nm, are fabricated using GaAs-based compound semiconductors. The fabrication process involves gas-source molecular beam epitaxy, electron-beam lithography, reactive ion etching, and thermal wet oxidation of Al0.93Ga0.07As. The fabrication of the air-bridge microcavity, in particular, also entails the sacrificial wet etch of AlxOy to suspend the micromechanical structure. The monorail and air-bridge microcavities have been optically characterized and the transmission spectra exhibit resonances in the 1550 nm wavelength regime. Tunability of the resonant wavelength is demonstrated through changing the defect size in the one-dimensional photonic crystal. The quality factors (Q) of the microcavities are about 140 for the monorail and 230 for the air bridge, respectively. (C) 1999 American Vacuum Society. [S0734-211X(99)03303-X].
引用
收藏
页码:1171 / 1174
页数:4
相关论文
共 50 条
  • [1] Photonic band-gap microcavities in three dimensions
    Lin, SY
    Fleming, JG
    Sigalas, MM
    Biswas, R
    Ho, KM
    PHYSICAL REVIEW B, 1999, 59 (24) : R15579 - R15582
  • [2] A photonic band-gap planar hollow waveguide
    Fedotov, AB
    Konorov, SO
    Naumov, AN
    Haus, JW
    Miles, RB
    Sidorov-Biryukov, DA
    Chigarev, NV
    Zheltikov, AM
    ICONO 2001: FUNDAMENTAL ASPECTS OF LASER-MATTER INTERACTION AND PHYSICS OF NANOSTRUCTURES, 2002, 4748 : 331 - 339
  • [3] Photonic band-gap properties of a porous silicon periodic planar waveguide
    Ferrand, P
    Romestain, R
    Vial, JC
    PHYSICAL REVIEW B, 2001, 63 (11)
  • [4] A Terahertz Waveguide Splitter using the Principle of Photonic Crystal Band-Gap
    Li, Ying
    Wang, Wei
    Zhou, Kai
    Deng, Jun
    Yang, Lin
    PROCEEDINGS OF 2014 3RD ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP 2014), 2014, : 1293 - 1295
  • [5] Photonic band gap microcavities in nitrides
    d'Yerville, ML
    Cassagne, D
    Jouanin, C
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2001, 183 (01): : 17 - 22
  • [6] PHOTONIC BAND-GAP STRUCTURES
    YABLONOVITCH, E
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (02) : 283 - 295
  • [7] PHOTONIC BAND-GAP CRYSTALS
    YABLONOVITCH, E
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (16) : 2443 - 2460
  • [8] Optical filters from photonic band gap air bridges
    Chen, JC
    Haus, HA
    Fan, SH
    Villeneuve, PR
    Joannopoulos, JD
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1996, 14 (11) : 2575 - 2580
  • [9] Diamondlike photonic band-gap crystal with a sizable band gap
    Leung, KM
    PHYSICAL REVIEW B, 1997, 56 (07): : 3517 - 3519
  • [10] Surface modes in air-core photonic band-gap fibers
    West, JA
    Smith, CM
    Borrelli, NF
    Allan, DC
    Koch, KW
    OPTICS EXPRESS, 2004, 12 (08): : 1485 - 1496