On the radiality of constrained minimizers to the Schrodinger-Poisson-Slater energy

被引:23
作者
Georgiev, Vladimir [1 ]
Prinari, Francesca [2 ]
Visciglia, Nicola [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56124 Pisa, Italy
[2] Univ Ferrara, Dipartimento Matemat, I-44100 Ferrara, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2012年 / 29卷 / 03期
关键词
GROUND-STATES; STABILITY; SYMMETRY; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.anihpc.2011.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the radial symmetry of minimizers to the Schrodinger Poisson Slater (S-P-S) energy: inf (u is an element of H1 (R3) parallel to u parallel to L2(R3)=rho) 1/2 integral(R3) vertical bar del u(x)vertical bar(2)vertical bar+ 1/4 integral(R3) integral(R3) vertical bar u(x)vertical bar(2)vertical bar u(y)vertical bar(2)/x-y vertical bar dxdy - 1/p integral(R3) integral(R3)vertical bar u vertical bar(p)dx provided that 2 < p < 3 and rho is small. The main result shows that minimizers are radially symmetric modulo suitable translation. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:369 / 376
页数:8
相关论文
共 18 条
[1]  
Ambrosetti A, 1995, Cambridge Studies in Advanced Mathematics, V34
[2]  
[Anonymous], 2001, ANAL GRADUATE STUDIE
[3]   Scaling properties of functionals and existence of constrained minimizers [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2486-2507
[4]   Stable standing waves for a class of nonlinear Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02) :267-280
[5]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[6]  
Brezis H., 2011, FUNCTIONAL ANAL SOBO
[8]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[9]  
ESTEBAN MJ, 1989, CR ACAD SCI I-MATH, V308, P281
[10]   NONSYMMETRIC GROUND-STATES OF SYMMETRICAL VARIATIONAL-PROBLEMS [J].
ESTEBAN, MJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :259-274