Virtual phase conjugation based optical tomography for single-shot three-dimensional imaging

被引:4
作者
Goto, Yuta [1 ]
Okamoto, Atsushi [1 ]
Shibukawa, Atsushi [2 ]
Ogawa, Kazuhisa [1 ]
Tomita, Akihisa [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] CALTECH, Elect Engn, Pasadena, CA 91125 USA
基金
日本学术振兴会;
关键词
FRINGE-PATTERN ANALYSIS; COHERENCE TOMOGRAPHY; FOURIER-TRANSFORM; HIGH-SPEED; MICROSCOPY; MICROLENS; PROPAGATION; RESOLUTION; KINOFORM; DEVICE;
D O I
10.1364/OE.26.003779
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a virtual phase conjugation (VPC) based optical tomography (VPC-OT) for realizing single-shot optical tomographic imaging systems. Using a computer-based numerical beam propagation, the VPC combines pre-modulation and post-demodulation of the probe beam's wavefront, which provides an optical sectioning capability for resolving the depth coordinates. In VPC-OT, the physical optical microscope system and VPC are coupled using digital holography. Therefore, in contrast to conventional optical tomographic imaging (OTI) systems, this method does not require additional elements such as low-coherence light sources or confocal pinholes. It is challenging to obtain single-shot three-dimensional (3D) tomographic images using a conventional OTI system; however, this can be achieved using VPC-OT, which employs both digital holography and computer based numerical beam propagation. In addition, taking into account that VPC-OT is based on a complex amplitude detection using digital holography, this method allows us to simultaneously obtain quantitative phase contrast images. Using an objective lens with a numerical aperture (NA) of 0.8, we demonstrate a single-shot 3D imaging of frog blood cells with a depth resolution of 0.94 mu m. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:3779 / 3790
页数:12
相关论文
共 29 条
[1]   Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras [J].
Akiba, M ;
Chan, KP ;
Tanno, N .
OPTICS LETTERS, 2003, 28 (10) :816-818
[2]   SPECKLE-NOISE REDUCTION ON KINOFORM RECONSTRUCTION USING A PHASE-ONLY SPATIAL LIGHT-MODULATOR [J].
AMAKO, J ;
MIURA, H ;
SONEHARA, T .
APPLIED OPTICS, 1995, 34 (17) :3165-3171
[3]   Full-field optical coherence microscopy [J].
Beaurepaire, E ;
Boccara, AC ;
Lebec, M ;
Blanchot, L ;
Saint-Jalmes, H .
OPTICS LETTERS, 1998, 23 (04) :244-246
[4]   FRINGE-PATTERN ANALYSIS USING A 2-D FOURIER-TRANSFORM [J].
BONE, DJ ;
BACHOR, HA ;
SANDEMAN, RJ .
APPLIED OPTICS, 1986, 25 (10) :1653-1660
[5]   Tomographic phase microscopy [J].
Choi, Wonshik ;
Fang-Yen, Christopher ;
Badizadegan, Kamran ;
Oh, Seungeun ;
Lue, Niyom ;
Dasari, Ramachandra R. ;
Feld, Michael S. .
NATURE METHODS, 2007, 4 (09) :717-719
[6]   DEPTH RESPONSE OF CONFOCAL OPTICAL MICROSCOPES [J].
CORLE, TR ;
CHOU, CH ;
KINO, GS .
OPTICS LETTERS, 1986, 11 (12) :770-772
[7]   Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation [J].
Cui, Meng ;
Yang, Changhuei .
OPTICS EXPRESS, 2010, 18 (04) :3444-3455
[8]   Confocal microscopy with a refractive microlens-pinhole array [J].
Eisner, M ;
Lindlein, N ;
Schwider, J .
OPTICS LETTERS, 1998, 23 (10) :748-749
[9]  
Fercher A F, 1996, J Biomed Opt, V1, P157, DOI 10.1117/12.231361
[10]   Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy [J].
Fujimoto, JG ;
Pitris, C ;
Boppart, SA ;
Brezinski, ME .
NEOPLASIA, 2000, 2 (1-2) :9-25