Air-breathing direct formic acid microfluidic fuel cell with an array of cylinder anodes

被引:74
作者
Zhu, Xun [1 ,2 ]
Zhang, Biao [1 ,2 ]
Ye, Ding-Ding [1 ,2 ]
Li, Jun [1 ,2 ]
Liao, Qiang [1 ,2 ]
机构
[1] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400030, Peoples R China
[2] Chongqing Univ, Inst Engn Thermophys, Chongqing 400030, Peoples R China
基金
中国国家自然科学基金;
关键词
Microfluidic fuel cell; Membraneless fuel cell; Air-breathing cathode; Cylinder anode; Carbon dioxide bubble; Reactant transfer; LAMINAR-FLOW; PERFORMANCE; CATALYST; LAYER;
D O I
10.1016/j.jpowsour.2013.08.119
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An air-breathing direct formic acid membraneless microfluidic fuel cell using graphite cylinder arrays as the anode is proposed. The three dimensional anode volumetrically extends the reactive surface area and improves fuel utilization. The effects of spacer configuration, fuel and electrolyte concentration as well as reactant flow rate on the species transport and cell performance are investigated. The dynamic behavior of generated CO2 bubbles is visualized and its effect on current generation is discussed. The results show that the absence of two spacers adjacent to the cathode surface improves the cell performance by reducing the proton transfer resistance. The CO2 gas bubbles are constrained within the anode array and expelled by the fluid flow periodically. Proper reactant concentration and flow rate are crucial for cell operation. At optimum conditions, a maximum current density of 118.3 mA cm(-3) and a peak power density of 21.5 mW cm(-3) are obtained. In addition, benefit from the volumetrically stacked anodes and enhanced fuel transfer, the maximum single pass fuel utilization rate reaches up to 87.6% at the flow rate of 1 mL h(-1). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:346 / 353
页数:8
相关论文
共 41 条
[1]   Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel [J].
Chang, Min-Hsing ;
Chen, Falin ;
Fang, Nai-Siang .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :810-816
[2]   Microfluidic fuel cell based on laminar flow [J].
Choban, ER ;
Markoski, LJ ;
Wieckowski, A ;
Kenis, PJA .
JOURNAL OF POWER SOURCES, 2004, 128 (01) :54-60
[3]   Fabrication and preliminary testing of a planar membraneless microchannel fuel cell [J].
Cohen, JL ;
Westly, DA ;
Pechenik, A ;
Abruña, HD .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :96-105
[4]   Electricity generation from decomposition of hydrogen peroxide [J].
Hasegawa, S ;
Shimotani, K ;
Kishi, K ;
Watanabe, H .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (02) :A119-A121
[5]   Nanoporous separator and low fuel concentration to minimize crossover in direct methanol laminar flow fuel cells [J].
Hollinger, A. S. ;
Maloney, R. J. ;
Jayashree, R. S. ;
Natarajan, D. ;
Markoski, L. J. ;
Kenis, P. J. A. .
JOURNAL OF POWER SOURCES, 2010, 195 (11) :3523-3528
[6]  
HUR J, 2010, IEEE INT C MEMS HONG, P168
[7]   Self-Pumping Membraneless Miniature Fuel Cell With an Air-Breathing Cathode Self-Pumping Membraneless Miniature Fuel Cell With an Air-Breathing Cathode [J].
Hur, Janet I. ;
Meng, Dennis Desheng ;
Kim, Chang-Jin CJ .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2012, 21 (02) :476-483
[8]   Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels [J].
Ismagilov, RF ;
Stroock, AD ;
Kenis, PJA ;
Whitesides, G ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2000, 76 (17) :2376-2378
[9]   Microfluidic hydrogen fuel cell with a liquid electrolyte [J].
Jayashree, Ranga S. ;
Mitchell, Michael ;
Natarajan, Dilip ;
Markoski, Larry J. ;
Kenis, Paul J. A. .
LANGMUIR, 2007, 23 (13) :6871-6874
[10]   On the performance of membraneless laminar flow-based fuel cells [J].
Jayashree, Ranga S. ;
Yoon, Seong Kee ;
Brushett, Fikile R. ;
Lopez-Montesinos, Pedro O. ;
Natarajan, Dilip ;
Markoski, Larry J. ;
Kenis, Paul J. A. .
JOURNAL OF POWER SOURCES, 2010, 195 (11) :3569-3578