Minimal surfaces with non-trivial geometry in the three-dimensional Heisenberg group

被引:0
作者
Dorfmeister, Josef F. [1 ]
Inoguchi, Jun-ichi [2 ]
Kobayashi, Shimpei [2 ]
机构
[1] Tech Univ Munich, Fak Math, Boltzmann Str 3, D-85747 Garching, Germany
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
来源
COMPLEX MANIFOLDS | 2022年 / 9卷 / 01期
关键词
Minimal surfaces; Heisenberg group; symmetries; generalized Weierstrass type representation; CONSTANT MEAN-CURVATURE; BERNSTEIN PROBLEM; REPRESENTATION;
D O I
10.1515/coma-2021-0141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study symmetric minimal surfaces in the three-dimensional Heisenberg group Nil(3) using the generalized Weierstrass type representation, the so-called loop group method. In particular, we will present a general scheme for how to construct minimal surfaces in Nil(3) with non-trivial geometry. Special emphasis will be put on equivariant minimal surfaces. Moreover, we will classify equivariant minimal surfaces given by one-parameter subgroups of the isometry group Iso(degrees)(Nil(3)) of Nil(3).
引用
收藏
页码:285 / 336
页数:52
相关论文
共 46 条
  • [1] Abresch U., 2005, MAT CONT, V28, P1
  • [2] [Anonymous], 1986, Oxford Mathematical Monographs
  • [3] Berard P., 2012, MAT CONT, V43, P37
  • [4] Berdinskii D. A, 2012, MAT T, V13, P75
  • [5] Surfaces in three-dimensional Lie groups
    Berdinsky, DA
    Taimanov, IA
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (06) : 1005 - 1019
  • [6] Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods
    Brander, David
    Rossman, Wayne
    Schmitt, Nicholas
    [J]. ADVANCES IN MATHEMATICS, 2010, 223 (03) : 949 - 986
  • [7] Bungart L., 1968, TOPOLOGY, V7, P55
  • [8] Equivariant harmonic cylinders
    Burstall, F. E.
    Kilian, M.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2006, 57 : 449 - 468
  • [9] SO(2)-INVARIANT MINIMAL AND CONSTANT MEAN-CURVATURE SURFACES IN 3-DIMENSIONAL HOMOGENEOUS SPACES
    CADDEO, R
    PIU, P
    RATTO, A
    [J]. MANUSCRIPTA MATHEMATICA, 1995, 87 (01) : 1 - 12
  • [10] Cartier S., 2011, THESIS U PARIS EST M