View-aligned hypergraph learning for Alzheimer's disease diagnosis with incomplete multi-modality data

被引:113
作者
Liu, Mingxia [1 ,2 ]
Zhang, Jun [1 ,2 ]
Yap, Pew-Thian [1 ,2 ]
Shen, Dinggang [1 ,2 ,3 ]
机构
[1] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27515 USA
[3] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
关键词
Multi-modality; Incomplete data; Alzheimer's disease; Classification; MILD COGNITIVE IMPAIRMENT; MRI; BRAIN; DEMENTIA; SEGMENTATION; RECOGNITION; PATTERNS; IMAGES; MODEL; CSF;
D O I
10.1016/j.media.2016.11.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effectively utilizing incomplete multi-modality data for the diagnosis of Alzheimer's disease (AD) and its prodrome (i.e., mild cognitive impairment, MCI) remains an active area of research. Several multi view learning methods have been recently developed for AD/MCI diagnosis by using incomplete multi modality data, with each view corresponding to a specific modality or a combination of several modalities. However, existing methods usually ignore the underlying coherence among views, which may lead to sub-optimal learning performance. In this paper, we propose a view-aligned hypergraph learning (VAHL) method to explicitly model the coherence among views. Specifically, we first divide the original data into several views based on the availability of different modalities and then construct a hypergraph in each view space based on sparse representation. A view-aligned hypergraph classification (VAHC) model is then proposed, by using a view-aligned regularizer to capture coherence among views. We further assemble the class probability scores generated from VAHC, via a multi-view label fusion method for making a final classification decision. We evaluate our method on the baseline ADNI-1 database with 807 subjects and three modalities (i.e., MRI, PET, and CSF). Experimental results demonstrate that out method outperforms state-of-the-art methods that use incomplete multi-modality data for AD/MCI diagnosis. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:123 / 134
页数:12
相关论文
共 45 条
[1]  
[Anonymous], 1999, Imputing Missing Data for Gene Expression Arrays
[2]   Convex multi-task feature learning [J].
Argyriou, Andreas ;
Evgeniou, Theodoros ;
Pontil, Massimiliano .
MACHINE LEARNING, 2008, 73 (03) :243-272
[3]   Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge [J].
Bron, Esther E. ;
Smits, Marion ;
van der Flier, Wiesje M. ;
Vrenken, Hugo ;
Barkhof, Frederik ;
Scheltens, Philip ;
Papma, Janne M. ;
Steketee, Rebecca M. E. ;
Orellana, Carolina Mendez ;
Meijboom, Rozanna ;
Pinto, Madalena ;
Meireles, Joana R. ;
Garrett, Carolina ;
Bastos-Leite, Antonio J. ;
Abdulkadir, Ahmed ;
Ronneberger, Olaf ;
Amoroso, Nicola ;
Bellotti, Roberto ;
Cardenas-Pena, David ;
Alvarez-Meza, Andres M. ;
Dolph, Chester V. ;
Iftekharuddin, Khan M. ;
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Fonov, Vladimir S. ;
Franke, Katja ;
Gaser, Christian ;
Ledig, Christian ;
Guerrero, Ricardo ;
Tong, Tong ;
Gray, Katherine R. ;
Moradi, Elaheh ;
Tohka, Jussi ;
Routier, Alexandre ;
Durrleman, Stanley ;
Sarica, Alessia ;
Di Fatta, Giuseppe ;
Sensi, Francesco ;
Chincarini, Andrea ;
Smith, Garry M. ;
Stoyanov, Zhivko V. ;
Sorensen, Lauge ;
Nielsen, Mads ;
Tangaro, Sabina ;
Inglese, Paolo ;
Wachinger, Christian ;
Reuter, Martin ;
van Swieten, John C. ;
Niessen, Wiro J. ;
Klein, Stefan .
NEUROIMAGE, 2015, 111 :562-579
[4]   Forecasting the global burden of Alzheimer's disease [J].
Brookmeyer, Ron ;
Johnson, Elizabeth ;
Ziegler-Graham, Kathryn ;
Arrighi, H. Michael .
ALZHEIMERS & DEMENTIA, 2007, 3 (03) :186-191
[5]   Mild cognitive impairment -: Can FDG-PET predict who is to rapidly convert to Alzheimer's disease? [J].
Chételat, G ;
Desgranges, B ;
de la Sayette, V ;
Viader, F ;
Eustache, F ;
Baron, JC .
NEUROLOGY, 2003, 60 (08) :1374-1377
[6]   Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database [J].
Cuingnet, Remi ;
Gerardin, Emilie ;
Tessieras, Jerome ;
Auzias, Guillaume ;
Lehericy, Stephane ;
Habert, Marie-Odile ;
Chupin, Marie ;
Benali, Habib ;
Colliot, Olivier .
NEUROIMAGE, 2011, 56 (02) :766-781
[7]   Retinal Fundus Image Enhancement Using the Normalized Convolution and Noise Removing [J].
Dai, Peishan ;
Sheng, Hanwei ;
Zhang, Jianmei ;
Li, Ling ;
Wu, Jing ;
Fan, Min .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2016, 2016
[8]   Approximate statistical tests for comparing supervised classification learning algorithms [J].
Dietterich, TG .
NEURAL COMPUTATION, 1998, 10 (07) :1895-1923
[9]  
Fletcher G. S., 2019, Clinical Epidemiology: The Essentials
[10]   FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease [J].
Foster, Norman L. ;
Heidebrink, Judith L. ;
Clark, Christopher M. ;
Jagust, William J. ;
Arnold, Steven E. ;
Barbas, Nancy R. ;
DeCarli, Charles S. ;
Turner, R. Scott ;
Koeppe, Robert A. ;
Higdon, Roger ;
Minoshima, Satoshi .
BRAIN, 2007, 130 :2616-2635