Marginal Lateritic Soil Stabilized with Calcium Carbide Residue and Fly Ash Geopolymers as a Sustainable Pavement Base Material

被引:100
作者
Phummiphan, Itthikorn [1 ]
Horpibulsuk, Suksun [2 ,3 ]
Phoo-ngernkham, Tanakorn [4 ]
Arulrajah, Arul [5 ]
Shen, Shui-Long [6 ]
机构
[1] Suranaree Univ Technol, Grad Program Construct & Infrastruct Management, 111 Univ Ave, Muang Dist 30000, Nakhon Ratchasi, Thailand
[2] Suranaree Univ Technol, Sch Civil Engn, 111 Univ Ave, Muang Dist 30000, Nakhon Ratchasi, Thailand
[3] Suranaree Univ Technol, Ctr Excellence Innovat Sustainable Infrastruct De, 111 Univ Ave, Muang Dist 30000, Nakhon Ratchasi, Thailand
[4] Rajamangala Univ Technol Isan, Fac Engn & Architecture, Dept Civil Engn, Nakhon Ratchasima 30000, Thailand
[5] Swinburne Univ Technol, Dept Civil & Construct Engn, Melbourne, Vic 3122, Australia
[6] Shanghai Jiao Tong Univ, Dept Civil Engn, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
关键词
Calcium carbide residue; Geopolymer; Strength; Microstructure; Marginal soil; Sustainable pavement base; STRENGTH DEVELOPMENT; COMPRESSIVE STRENGTH; ENGINEERING PROPERTIES; MECHANICAL-PROPERTIES; PORTLAND-CEMENT; CLAY; CONCRETE; SLAG;
D O I
10.1061/(ASCE)MT.1943-5533.0001708
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Two waste by-products, fly ash (FA) and calcium carbide residue (CCR), are used to develop geopolymer binders for stabilizing marginal lateritic soil as a sustainable pavement base. The liquid alkaline activator is a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide (NaOH) at a concentration of 10 molars. Unconfined compressive strength (UCS) and scanning electron microscopy (SEM) images of lateritic soil-FA geopolymers at different influential factors (curing times, Na2SiO3:NaOH ratios, and CCR replacement ratios) are measured. The soaked 7-day UCS of lateritic soil-FA geopolymers meets the strength requirement for both light and heavy traffic pavement specified by the local national authorities. The early 7-day UCS and cementitious products increase with increasing CCR replacement ratio, and the cementitious products are clearly observed at CCR = 30% (the highest CCR replacement ratio tested). However, the CCR replacement ratio providing the maximum 90-day strength is found at 20%. FA particles in lateritic soil-FA geopolymer at excessive CCR replacement ratio of 30% are evidently spongy and cracked because of early aluminosilicate gel precipitation and generated heat, hence the subsequent reduced strength. The CCR replacement is recommended for low NaOH geopolymer binder (Na2SiO3:NaOHratios90:10) at 20%. This research seeks to enable CCR traditionally destined for landfill to be used as a promoter in geopolymer binder, which is significant in addressing the sustainable usage of CCR from engineering, economical, and environmental perspectives.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material
    Phummiphan, Itthikorn
    Horpibulsuk, Suksun
    Rachan, Runglawan
    Arulrajan, Arul
    Shen, Shui-Long
    Chindaprasirt, Prinya
    JOURNAL OF HAZARDOUS MATERIALS, 2018, 341 : 257 - 267
  • [2] Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer
    Phummiphan, Itthikorn
    Horpibulsuk, Suksun
    Sukmak, Patimapon
    Chinkulkijniwat, Avirut
    Arulrajah, Arul
    Shen, Shui-Long
    ROAD MATERIALS AND PAVEMENT DESIGN, 2016, 17 (04) : 877 - 891
  • [3] Comparison between cement and fly ash geopolymer for stabilized marginal lateritic soil as road material
    Teerawattanasuk, Chairat
    Voottipruex, Panich
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2019, 20 (11) : 1264 - 1274
  • [4] Recycled asphalt pavement - fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations
    Hoy, Menglim
    Horpibulsuk, Suksun
    Rachan, Runglawan
    Chinkulkijniwat, Avirut
    Arulrajah, Arul
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 573 : 19 - 26
  • [5] Stabilization of Recycled Demolition Aggregates by Geopolymers comprising Calcium Carbide Residue, Fly Ash and Slag precursors
    Arulrajah, Arul
    Mohammadinia, Alireza
    Phummiphan, Itthikorn
    Horpibulsuk, Suksun
    Samingthong, Wisanukorn
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 114 : 864 - 873
  • [6] Engineering properties of marginal lateritic soil stabilized with one-part high calcium fly ash geopolymer as pavement materials
    Tesanasin, Teerat
    Suksiripattanapong, Cherdsak
    Van Duc, Bui
    Tabyang, Wisitsak
    Phetchuay, Chayakrit
    Phoo-ngernkham, Tanakorn
    Sukontasukkul, Piti
    Chindaprasirt, Prinya
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [7] Microstructure of Calcium Carbide Residue-Ground Fly Ash Paste
    Somna, Kiatsuda
    Jaturapitakkul, Chai
    Kajitvichyanukul, Puangrat
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2011, 23 (03) : 298 - 304
  • [8] Performance and evaluation of calcium carbide residue stabilized lateritic soil for construction materials
    Chindaprasirt, Prinya
    Kampala, Apichit
    Jitsangiam, Peerapong
    Horpibulsuk, Suksun
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2020, 13
  • [9] Soil Stabilization by Calcium Carbide Residue and Fly Ash
    Horpibulsuk, Suksun
    Phetchuay, Chayakrit
    Chinkulkijniwat, Avirut
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2012, 24 (02) : 184 - 193
  • [10] Laboratory Investigation of Cement-Stabilized Marginal Lateritic Soil by Crushed Slag-Fly Ash Replacement for Pavement Applications
    Sudla, Phuttipong
    Donrak, Jeerapan
    Hoy, Menglim
    Horpibulsuk, Suksun
    Arulrajah, Arul
    Rashid, Ahmad Safuan A.
    Nazir, Ramli
    Samingthong, Wisanukhorn
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2020, 32 (02)