Carbon nanotubes prevent the coagulation at high shear rates of aqueous suspensions of equiaxed ceramic nanoparticles

被引:12
作者
Candelario, Victor M. [1 ]
Moreno, Rodrigo [2 ]
Ortiz, Angel L. [1 ]
机构
[1] Univ Extremadura, Dept Ingn Mecan Energet & Mat, Badajoz 06006, Spain
[2] CSIC, Inst Ceram & Vidrio, Madrid 28049, Spain
关键词
Aqueous colloidal processing; CNTs; Dispersion; Nanoceramics; Ceramic nanocomposites; ZIRCONIA; Y3AL5O12; BEHAVIOR; POWDERS;
D O I
10.1016/j.jeurceramsoc.2013.09.003
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Equiaxed ceramic nanoparticles and their mixtures are expected to exhibit shear-thinning behaviour when dispersed colloidally in aqueous media, whereas shear-thickening is the expectation for large aspect ratio phases such as, for example, carbon nanotubes (CNTs). Here, contrary experimental evidence is presented demonstrating the occurrence of severe coagulation at high shear rates in colloidally stable, semi-concentrated, aqueous suspensions of equiaxed SiC nanoparticles (major phase) mixed with equiaxed Y3Al5O12 nanoparticles (liquid-phase sintering additive), and how CNT addition prevents this coagulation if sufficient sonication is applied. It is also shown that although shear-thinning is the natural behaviour of the ceramic suspension up to moderate shear rates, coagulation is eventually a phenomenon inherent to the aqueous colloidal processing of these suspensions, with the critical shear rate for coagulation increasing and the rheopexy decreasing the better is the initial dispersion state achieved with the sonication. It is also shown that the critical shear rate for coagulation depends on the exact condition of shear rate increase, and that the re-sheared suspensions coagulate more significantly and at lower shear rates than the fresh suspensions. The mechanisms by which this coagulation occurs and is impeded by the CNTs are discussed, together with broader implications of these phenomena for the environmentally friendly processing of nanostructured ceramics and ceramic composites. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:555 / 563
页数:9
相关论文
共 46 条
[31]   Exceeding high concentration limits of aqueous dispersion of carbon nanotubes assisted by nanoscale xylan hydrate crystals [J].
Wang, Shanyong ;
Song, Tao ;
Qi, Haisong ;
Xiang, Zhouyang .
CHEMICAL ENGINEERING JOURNAL, 2021, 419
[32]   High-Efficiency Encapsulation of Pt Nanoparticles into the Channel of Carbon Nanotubes as an Enhanced Electrocatalyst for Methanol Oxidation [J].
Zhang, Jianan ;
Guo, Shaojun ;
Wei, Junyi ;
Xu, Qun ;
Yan, Wenfu ;
Fu, Jianwei ;
Wang, Shoupei ;
Cao, Mingjing ;
Chen, Zhimin .
CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (47) :16087-16092
[33]   Orientation and Dispersion Evolution of Carbon Nanotubes in Ultra High Molecular Weight Polyethylene Composites under Extensional-Shear Coupled Flow: A Dissipative Particle Dynamics Study [J].
Wang, Junxia ;
Cao, Changlin ;
Chen, Xiaochuan ;
Ren, Shijie ;
Chen, Yu ;
Yu, Dingshan ;
Chen, Xudong .
POLYMERS, 2019, 11 (01)
[34]   Solvent-assisted synthesis of carbon nanotubes-manganese oxide hybrid materials for high voltage aqueous supercapacitor [J].
Mery, Adrien ;
Cagnon, Benoit ;
Van, Francois Tran ;
Autret, Cecile ;
Ghamouss, Fouad .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 763 :62-70
[35]   Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions [J].
Alpatova, Alla L. ;
Shan, Wenqian ;
Babica, Pavel ;
Upham, Brad L. ;
Rogensues, Adam R. ;
Masten, Susan J. ;
Drown, Edward ;
Mohanty, Amar K. ;
Alocilja, Evangelyn C. ;
Tarabara, Volodymyr V. .
WATER RESEARCH, 2010, 44 (02) :505-520
[36]   Application of polyrhodanine modified multi-walled carbon nanotubes for high efficiency removal of Pb(II) from aqueous solution [J].
Alizadeh, Bahareh ;
Ghorbani, Mohsen ;
Salehi, Mohammad Ali .
JOURNAL OF MOLECULAR LIQUIDS, 2016, 220 :142-149
[37]   High dispersion of Ru nanoparticles supported on carbon nanotubes synthesized by water-assisted chemical vapor deposition for cellobiose conversion [J].
Ran, Maofei ;
Liu, Yan ;
Chu, Wei ;
Liu, Zhibin ;
Borgna, Armando .
CATALYSIS COMMUNICATIONS, 2012, 27 :69-72
[38]   Improving the anti-impact performance of ultra-high molecular weight polyethylene fabric intercalated with carbon nanotubes and shear thickening fluid [J].
Lu, Chunrui ;
Ji, Weichang ;
Lu, Xue ;
Xu, Chuang ;
Zhang, Jingjing ;
Wang, Xiaodong ;
Ba, Shuhong .
POLYMER COMPOSITES, 2024,
[39]   Study on the evolution mechanism of adiabatic shear bands during the deformation of medium carbon bainitic steel acted upon by high strain rates [J].
Zhou, Songbo ;
Hu, Feng ;
Ke, Rui ;
Zheng, Hua ;
Wang, Yingying ;
Xiang, Houkui ;
Wu, Kaiming .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 35 :4745-4755
[40]   Enhancement on interlaminar shear strength and water-lubricated tribological performance of high-strength glass fabric/phenolic laminate by the incorporation of carbon nanotubes [J].
Liu, Ning ;
Wang, Jianzhang ;
Yang, Jie ;
Han, Gaofeng ;
Yan, Fengyuan .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2014, 25 (12) :1572-1579