Some examples of Dirac-harmonic maps

被引:5
|
作者
Ammann, Bernd [1 ]
Ginoux, Nicolas [2 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Lorraine, IECL, CNRS, F-57000 Metz, France
关键词
Dirac-harmonic maps; Twistor spinors;
D O I
10.1007/s11005-018-1134-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a method to construct Dirac-harmonic maps developed by Jost et al. (J Geom Phys 59(11):1512-1527, 2009). The method uses harmonic spinors and twistor spinors and mainly applies to Dirac-harmonic maps of codimension 1 with target spaces of constant sectional curvature. Before the present article, it remained unclear when the conditions of the theorems in Jost et al. (2009) were fulfilled. We show that for isometric immersions into space forms, these conditions are fulfilled only under special assumptions. In several cases, we show the existence of solutions.
引用
收藏
页码:1205 / 1218
页数:14
相关论文
共 9 条
  • [1] Some examples of Dirac-harmonic maps
    Bernd Ammann
    Nicolas Ginoux
    Letters in Mathematical Physics, 2019, 109 : 1205 - 1218
  • [2] DIRAC-HARMONIC MAPS BETWEEN RIEMANN SURFACES
    Chen, Qun
    Jost, Jurgen
    Sun, Linlin
    Zhu, Miaomiao
    ASIAN JOURNAL OF MATHEMATICS, 2019, 23 (01) : 107 - 125
  • [3] Uniqueness of Dirac-harmonic maps from a compact surface with boundary
    Jost, Juergen
    Zhu, Jingyong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 357 : 388 - 411
  • [4] Regularity for Dirac-harmonic maps into certain pseudo-Riemannian manifolds
    Ai, Wanjun
    Zhu, Miaomiao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
  • [5] Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary
    Jost, Juergen
    Liu, Lei
    Zhu, Miaomiao
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (02): : 365 - 387
  • [6] Boundary blow-up analysis for approximate Dirac-harmonic maps into stationary Lorentzian manifolds
    Ai, Wanjun
    Liu, Lei
    Zhu, Miaomiao
    SCIENCE CHINA-MATHEMATICS, 2025, 68 (03) : 649 - 676
  • [7] Existence of (Dirac-)harmonic Maps from Degenerating (Spin) Surfaces
    Jost, Juergen
    Zhu, Jingyong
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (11) : 11165 - 11189
  • [8] From Harmonic Maps to the Nonlinear Supersymmetric Sigma Model of Quantum Field Theory: at the Interface of Theoretical Physics, Riemannian Geometry, and Nonlinear Analysis
    Jürgen Jost
    Enno Keßler
    Jürgen Tolksdorf
    Ruijun Wu
    Miaomiao Zhu
    Vietnam Journal of Mathematics, 2019, 47 : 39 - 67
  • [9] From Harmonic Maps to the Nonlinear Supersymmetric Sigma Model of Quantum Field Theory: at the Interface of Theoretical Physics, Riemannian Geometry, and Nonlinear Analysis
    Jost, Juergen
    Kessler, Enno
    Tolksdorf, Juergen
    Wu, Ruijun
    Zhu, Miaomiao
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (01) : 39 - 67