Global feedback stabilization of multi-input bilinear systems

被引:5
|
作者
Shen, Jinzhong [1 ]
Zhu, Yuanguo [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Appl Math, Nanjing 210094, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Bilinear systems; Asymptotic stability; Lyapunov function; Exponential convergence; Homogeneous function;
D O I
10.1016/j.aml.2013.02.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper mainly investigates the problem of stabilization of homogeneous bilinear systems with multiple inputs. Explicit state feedback laws are given to stabilize the bilinear systems. Meanwhile, an estimate of the convergence speed is obtained under the given feedback laws. Besides, sufficient conditions, which are easy to be verified, are presented for the stabilization of the bilinear systems. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:820 / 825
页数:6
相关论文
共 50 条
  • [21] Networked stabilization of multi-input systems over MIMO communication
    Li, Junhui
    Chen, Wei
    SYSTEMS & CONTROL LETTERS, 2024, 190
  • [22] Inexact predictor feedback for multi-input nonlinear systems with distinct input delays☆
    Fang, Qin
    Zhang, Zhengqiang
    AUTOMATICA, 2024, 159
  • [23] Orbital feedback linearization of multi-input control affine systems
    Guay, M
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 3630 - 3635
  • [24] Further results on transverse feedback linearization of multi-input systems
    Nielsen, Christopher
    Maggiore, Manfredi
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 3819 - 3824
  • [25] Robust Stabilization Nuclei of Multi-input and Multi-output Uncertain Systems*
    贾英民
    高为炳
    程勉
    Science China Mathematics, 1993, (12) : 1509 - 1519
  • [26] Global Asymptotic Stabilization for a Class of Bilinear Systems by Hybrid Output Feedback
    Andrieu, Vincent
    Tarbouriech, Sophie
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (06) : 1602 - 1608
  • [27] Networked stabilization for multi-input systems over quantized fading channels
    Gu, Guoxiang
    Wan, Shuang
    Qiu, Li
    AUTOMATICA, 2015, 61 : 1 - 8
  • [28] Feedback Stabilization of Delayed Bilinear Systems
    Z. Hamidi
    A Elazzouzi
    M. Ouzahra
    Differential Equations and Dynamical Systems, 2024, 32 : 87 - 100
  • [29] Feedback Stabilization of Delayed Bilinear Systems
    Hamidi, Z.
    Elazzouzi, A.
    Ouzahra, M.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (01) : 87 - 100
  • [30] Feedback stabilization of bilinear control systems
    Wang, HL
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (05) : 1669 - 1684