A MULTI-DIMENSIONAL RESOLUTION OF SINGULARITIES WITH APPLICATIONS TO ANALYSIS

被引:25
作者
Collins, Tristan C. [1 ]
Greenleaf, Allan [2 ]
Pramanik, Malabika [3 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
OSCILLATORY INTEGRAL-OPERATORS; MAXIMAL AVERAGES; STABILITY; HYPERSURFACES; TRANSFORMS; R-3;
D O I
10.1353/ajm.2013.0042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate a resolution of singularities algorithm for analyzing the zero sets of real-analytic functions in dimensions >= 3. Rather than using the celebrated result of Hironaka, the algorithm is modeled on a more explicit and elementary approach used in the contemporary algebraic geometry literature. As an application, we define a new notion of the height of real-analytic functions, compute the critical integrability index, and obtain sharp growth rate of sublevel sets. This also leads to a characterization of the oscillation index of scalar oscillatory integrals with real-analytic phases in all dimensions.
引用
收藏
页码:1179 / 1252
页数:74
相关论文
共 55 条
[1]   ON THE RAMIFICATION OF ALGEBRAIC FUNCTIONS [J].
ABHYANKAR, S .
AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (03) :575-592
[2]  
Abhyankar S. S., 1964, Pure and Applied Mathematics, VXIV
[3]  
[Anonymous], 1993, Algorithmic algebra
[4]  
[Anonymous], 1973, Introduction to real-analytic sets and real-analytic maps
[5]  
Arnold V I., 1973, Function. Anal. Appl, V6, P254, DOI [10.1007/BF01077644, DOI 10.1007/BF01077644]
[6]  
Arnold V.I., 1988, Singularities of Differentiable Maps, VII
[7]  
Arnold V. I, 1975, USP MAT NAUK, V30, P3
[8]   Puiseux parametric equations of analytic sets [J].
Aroca, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (10) :3035-3045
[9]  
BIERSTONE E, 1988, PUBL MATH-PARIS, P5
[10]   ARC-ANALYTIC FUNCTIONS [J].
BIERSTONE, E ;
MILMAN, PD .
INVENTIONES MATHEMATICAE, 1990, 101 (02) :411-424