On the Combinatorics of Rigid Objects in 2-Calabi-Yau Categories

被引:54
作者
Dehy, Raika [2 ]
Keller, Bernhard [1 ]
机构
[1] Univ Paris 07, CNRS, UMR 7586, Inst Math,UFR Math, F-75251 Paris 05, France
[2] Univ Cergy Pontoise St Martin, Dept Math, CNRS, UMR 8088, F-95302 Cergy Pontoise, France
关键词
D O I
10.1093/imrn/rnn029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a triangulated 2-Calabi-Yau category C and a cluster-tilting subcategory T, the index of an object X of C is a certain element of the Grothendieck group of the additive category T. In this note, we show that a rigid object of C is determined by its index, that the indices of the indecomposables of a cluster-tilting subcategory T' form a basis of the Grothendieck group of T and that, if T and T' are related by a mutation, then the indices with respect to T and T' are related by a certain piecewise linear transformation introduced by Fomin and Zelevinsky in their study of cluster algebras with coefficients. This allows us to give a combinatorial construction of the indices of all rigid objects reachable from the given cluster-tilting subcategory T. Conjecturally, these indices coincide with Fomin-Zelevinsky's g-vectors.
引用
收藏
页数:17
相关论文
共 19 条
[1]   Cluster algebras III: Upper bounds and double Bruhat cells [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :1-52
[2]  
BUAN AB, 2007, ARXIVMATHRT0701557
[3]  
Buan AB, 2006, CONTEMP MATH, V406, P1
[4]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[5]  
DERKSEN H, 2007, ARXIV07040649V2
[6]   Cluster algebras II: Finite type classification [J].
Fomin, S ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2003, 154 (01) :63-121
[7]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[8]   Cluster algebras IV: Coefficients [J].
Fomin, Sergey ;
Zelevinsky, Andrei .
COMPOSITIO MATHEMATICA, 2007, 143 (01) :112-164
[9]  
FU C, 2007, ARXIV07103152
[10]   Semicanonical bases and preprojective algebras [J].
Geiss, C ;
Leclerc, B ;
Schröer, J .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (02) :193-253