CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces

被引:56
|
作者
Kant, Piyush [1 ]
Laskar, Shahedul Haque [1 ]
Hazarika, Jupitara [1 ]
Mahamune, Rupesh [1 ]
机构
[1] Natl Inst Technol, Dept Elect & Instrumentat Engn, Silchar 788010, Assam, India
关键词
EEG signal processing; cwt filter-bank; deep learning; short-time Fourier transform; convolutional neural network; Transfer Learning; EEG SIGNALS; SPATIAL-PATTERNS; NEURAL-NETWORKS; FEATURES;
D O I
10.1016/j.jneumeth.2020.108886
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The processing of brain signals for Motor imagery (MI) classification to have better accuracy is a key issue in the Brain-Computer Interface (BCI). While conventional methods like Artificial neural network (ANN), Linear discernment analysis (LDA), K-Nearest Neighbor (KNN), Support vector machine (SVM), etc. have made significant progress in terms of classification accuracy, deep transfer learning-based systems have shown the potential to outperform them. BCI can play a vital role in enabling communication with the external world for persons with motor disabilities. New Methods: Deep learning has been a success in many fields. However, for Electroencephalogram (EEG) signals, relatively minimal work has been carried out using deep learning. This paper proposes a combination of Continuous Wavelet Transform (CWT) along with deep learning-based transfer learning to solve the problem. CWT transforms one dimensional EEG signals into two-dimensional time-frequency-amplitude representation enabling us to exploit available deep networks through transfer learning. Results: The effectiveness of the proposed approach is evaluated in this study using an openly available BCI competition data-set. The results of the approach have been compared to earlier works on the same dataset, and a promising validation accuracy of 95.71% is achieved in our investigation. Comparison with existing methods and Conclusion: Our approach has shown significant improvement over other studies, which is 5.71% improvement over earlier reported algorithm (Tabar and Halici, 2017) using the same dataset. Results show the validity of the proposed Deep Transfer-Learning based technique as a state of the art technique for MI classification in BCI.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Motor Imagery EEG Signal Classification based on Deep Transfer Learning
    Wei, Mingnan
    Yang, Rui
    Huang, Mengjie
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 85 - 90
  • [22] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [23] Adaptive Stacked Generalization for Multiclass Motor Imagery-Based Brain Computer Interfaces
    Nicolas-Alonso, Luis F.
    Corralejo, Rebeca
    Gomez-Pilar, Javier
    Alvarez, Daniel
    Hornero, Roberto
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2015, 23 (04) : 702 - 712
  • [24] Sequential Transfer Learning via Segment After Cue Enhances the Motor Imagery-based Brain-Computer Interface
    Kim, Dong-Kyu
    Kim, Young-Tak
    Jung, Hee-Ra
    Kim, Hakseung
    Kim, Dong-Joo
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 318 - 322
  • [25] A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface
    Mattioli, F.
    Porcaro, C.
    Baldassarre, G.
    JOURNAL OF NEURAL ENGINEERING, 2021, 18 (06)
  • [26] Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces
    Roy, Sujit
    Chowdhury, Anirban
    McCreadie, Karl
    Prasad, Girijesh
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [27] The Application of Entropy in Motor Imagery Paradigms of Brain-Computer Interfaces
    Wu, Chengzhen
    Yao, Bo
    Zhang, Xin
    Li, Ting
    Wang, Jinhai
    Pu, Jiangbo
    BRAIN SCIENCES, 2025, 15 (02)
  • [28] Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification
    Chiarelli, Antonio Maria
    Croce, Pierpaolo
    Merla, Arcangelo
    Zappasodi, Filippo
    JOURNAL OF NEURAL ENGINEERING, 2018, 15 (03)
  • [29] Transfer learning algorithm design for feature transfer problem in motor imagery brain-computer interface
    Zhang, Yu
    Li, Huaqing
    Dong, Heng
    Dai, Zheng
    Chen, Xing
    Li, Zhuoming
    CHINA COMMUNICATIONS, 2022, 19 (02) : 39 - 46
  • [30] Adaptive CSP with subspace alignment for subject-to-subject transfer in motor imagery brain-computer interfaces
    Jin, Yiming
    Mousavi, Mahta
    de Sa, Virginia R.
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 51 - 54