Hydrogenotitanates nanotubes supported platinum anode for direct methanol fuel cell

被引:15
作者
Abida, Bochra [1 ]
Chirchi, Lotfi [1 ]
Baranton, Steve [2 ]
Napporn, Teko Wilhelmin [2 ]
Morais, Claudia [2 ]
Leger, Jean-Michel [2 ]
Ghorbel, Abdelhamid [1 ]
机构
[1] Fac Sci Tunis, Lab Chim Mat & Catalyse, El Manar 2092, Tunisia
[2] Univ Poitiers, CNRS, UMR 7285, IC2MP, F-86022 Poitiers, France
关键词
Hydrogenotitanates nanotubes; Platinum nanoparticles; CO stripping; Methanol oxidation; Direct methanol fuel cell; TITANATE NANOTUBES; ELECTROCATALYTIC OXIDATION; PHOTOCATALYTIC ACTIVITY; ETHANOL OXIDATION; CATALYSTS; CO; ELECTROOXIDATION; TIO2; ADSORPTION; PT/C;
D O I
10.1016/j.jpowsour.2013.04.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogenotitanates nanotubes (HTNs) are prepared from TiO2 powder via hydrothermal processing in 11.25 M NaOH aq. The reaction temperature is 130 degrees C for 20 h. Afterward a heat treatment is done during 2 h at 500 degrees C in air, to obtain calcined HTNs (HTNs-cal). The structural change on the molecular TiO2 during the hydrothermal treatment is investigated in detail by various analytic techniques such as XRD and TEM, which reveal that the crystal structure of the HTNs materials is similar to that of H2Ti2O5 center dot H2O nanotubes with 160 nm in length and 10 nm in diameter. Nitrogen adsorption-desorption isotherms indicate that synthesized solids are mesoporous materials with a multiwalled nanotubular structure and high specific surface area. Platinum nanoparticles are deposited on the HTNs by the impregnation method for a total noble metal loading of 10 wt%. The electrocatalytic activity of these electrocatalysts is evaluated by cyclic voltammetry in acid medium. Typical CO stripping voltammetry in acidic solutions is investigated. The results demonstrate that the HTNs can greatly enhance the catalytic activity of Pt for methanol oxidation. The CO stripping test shows that the Pt/HTNs can shift the CO oxidation potential to lower direction than Pt/C (XC72) and Pt/HTNs-cal catalysts. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:429 / 439
页数:11
相关论文
共 50 条
  • [31] Three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for direct methanol and direct ethanol fuel cell applications
    Kung, Chih-Chien
    Lin, Po-Yuan
    Xue, Yuhua
    Akolkar, Rohan
    Dai, Liming
    Yu, Xiong
    Liu, Chung-Chiun
    JOURNAL OF POWER SOURCES, 2014, 256 : 329 - 335
  • [32] Polyaniline-13X zeolite composite-supported platinum electrocatalysts for direct methanol fuel cell applications
    Vinodh, Rajangam
    Rana, Prem Jyoti Sing
    Gopi, Chandu V. V. Muralee
    Yang, Zongmin
    Atchudan, Raji
    Venkatachalam, Kandan
    Kim, Hee-Je
    POLYMER INTERNATIONAL, 2019, 68 (05) : 929 - 935
  • [33] Pt-Co supported on single-walled carbon nanotubes as an anode catalyst for direct methanol fuel cells
    Shen, Jianfeng
    Hua, Yizhe
    Li, Chen
    Qin, Chen
    Ye, Mingxin
    ELECTROCHIMICA ACTA, 2008, 53 (24) : 7276 - 7280
  • [34] Composite anode electrode based on iridium oxide promoter for direct methanol fuel cells
    Baglio, V.
    Sebastian, D.
    D'Urso, C.
    Stassi, A.
    Amin, R. S.
    El-Khatib, K. M.
    Arico, A. S.
    ELECTROCHIMICA ACTA, 2014, 128 : 304 - 310
  • [35] Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt
    Bauer, Alex
    Gyenge, Elod L.
    Oloman, Colin W.
    JOURNAL OF POWER SOURCES, 2007, 167 (02) : 281 - 287
  • [36] Determination of the efficiency of methanol oxidation in a direct methanol fuel cell
    Majidi, Pasha
    Altarawneh, Rakan M.
    Ryan, Nicholas D. W.
    Pickup, Peter G.
    ELECTROCHIMICA ACTA, 2016, 199 : 210 - 217
  • [37] Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: A review
    Kaur, Akaljot
    Kaur, Gagandeep
    Singh, Prit Pal
    Kaushal, Sandeep
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (29) : 15820 - 15849
  • [38] Composite anode catalyst layer for direct methanol fuel cell
    Liu, Peng
    Yin, Ge-Ping
    Du, Chun-Yu
    ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (10) : 1471 - 1473
  • [39] A physical model of Direct Methanol Fuel Cell anode impedance
    Zago, M.
    Casalegno, A.
    JOURNAL OF POWER SOURCES, 2014, 248 : 1181 - 1190
  • [40] Platinum utilization in proton exchange membrane fuel cell and direct methanol fuel cell
    Bandapati, Madhavi
    Goel, Sanket
    Krishnamurthy, Balaji
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND ENGINEERING, 2019, 9 (04): : 281 - 310