In vitro prototyping of limonene biosynthesis using cell-free protein synthesis

被引:78
作者
Dudley, Quentin M. [1 ,2 ,3 ]
Karim, Ashty S. [1 ,2 ,3 ]
Nash, Connor J. [1 ,2 ,3 ]
Jewett, Michael C. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Ctr Synthet Biol, Evanston, IL 60208 USA
[3] Earlham Inst, Norwich Res Pk,Colney Lane, Norwich NR4 7UZ, Norfolk, England
关键词
Cell-free metabolic engineering; Limonene; iPROBE; Cell-free metabolic pathway prototyping; Cell-free protein synthesis; Synthetic biology; ESCHERICHIA-COLI; MEVALONATE PATHWAY; OPTIMIZATION; PLATFORM; DESIGN;
D O I
10.1016/j.ymben.2020.05.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolic engineering of microorganisms to produce sustainable chemicals has emerged as an important part of the global bioeconomy. Unfortunately, efforts to design and engineer microbial cell factories are challenging because design-build-test cycles, iterations of re-engineering organisms to test and optimize new sets of enzymes, are slow. To alleviate this challenge, we demonstrate a cell-free approach termed in vitro Prototyping and Rapid Optimization of Biosynthetic Enzymes (or iPROBE). In iPROBE, a large number of pathway combinations can be rapidly built and optimized. The key idea is to use cell-free protein synthesis (CFPS) to manufacture pathway enzymes in separate reactions that are then mixed to modularly assemble multiple, distinct biosynthetic pathways. As a model, we apply our approach to the 9-step heterologous enzyme pathway to limonene in extracts from Escherichia coli. In iterative cycles of design, we studied the impact of 54 enzyme homologs, multiple enzyme levels, and cofactor concentrations on pathway performance. In total, we screened over 150 unique sets of enzymes in 580 unique pathway conditions to increase limonene production in 24 h from 0.2 to 4.5 mM (23-610 mg/L). Finally, to demonstrate the modularity of this pathway, we also synthesized the biofuel precursors pinene and bisabolene. We anticipate that iPROBE will accelerate design-build-test cycles for metabolic engineering, enabling data-driven multiplexed cell-free methods for testing large combinations of biosynthetic enzymes to inform cellular design.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 75 条
  • [61] PRISEs (progesterone 5β-reductase and/or iridoid synthase-like 1,4-enone reductases): Catalytic and substrate promiscuity allows for realization of multiple pathways in plant metabolism
    Schmidt, Karin
    Petersen, Jan
    Munkert, Jennifer
    Egerer-Sieber, Claudia
    Hornig, Michael
    Muller, Yves A.
    Kreis, Wolfgang
    [J]. PHYTOCHEMISTRY, 2018, 156 : 9 - 19
  • [62] In-depth characterization of genome-scale network reconstructions for the in vitro synthesis in cell-free systems
    Schuh, Lisa Katharina
    Weyler, Christian
    Heinzle, Elmar
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (04) : 1137 - 1147
  • [63] Cell-free gene expression: an expanded repertoire of applications
    Silverman, Adam D.
    Karim, Ashty S.
    Jewett, Michael C.
    [J]. NATURE REVIEWS GENETICS, 2020, 21 (03) : 151 - 170
  • [64] Functional optimization of gene clusters by combinatorial design and assembly
    Smanski, Michael J.
    Bhatia, Swapnil
    Zhao, Dehua
    Park, YongJin
    Woodruff, Lauren B. A.
    Giannoukos, Georgia
    Ciulla, Dawn
    Busby, Michele
    Calderon, Johnathan
    Nicol, Robert
    Gordon, D. Benjamin
    Densmore, Douglas
    Voigt, Christopher A.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (12) : 1241 - U104
  • [65] BioBits Health: Classroom Activities Exploring Engineering, Biology, and Human Health with Fluorescent Readouts
    Stark, Jessica C.
    Huang, Ally
    Hsu, Karen J.
    Dubner, Rachel S.
    Forbrook, Jason
    Marshalla, Suzanne
    Rodriguez, Faith
    Washington, Mechelle
    Rzimicky, Grant A.
    Nguyen, Peter Q.
    Hasselbacher, Brenna
    Jabri, Ramah
    Kamran, Rijha
    Koralewski, Veronica
    Wightkin, Will
    Martinez, Thomas
    Jewett, Michael C.
    [J]. ACS SYNTHETIC BIOLOGY, 2019, 8 (05): : 1001 - 1009
  • [66] BioBits™ Bright: A fluorescent synthetic biology education kit
    Stark, Jessica C.
    Huang, Ally
    Nguyen, Peter Q.
    Dubner, Rachel S.
    Hsu, Karen J.
    Ferrante, Thomas C.
    Anderson, Mary
    Kanapskyte, Ada
    Mucha, Quinn
    Packett, Jessica S.
    Patel, Palak
    Patel, Richa
    Qaq, Deema
    Zondor, Tyler
    Burke, Julie
    Martinez, Thomas
    Miller-Berry, Ashlee
    Puppala, Aparna
    Reichert, Kara
    Schmid, Miriam
    Brand, Lance
    Hill, Lander R.
    Chellaswamy, Jemima F.
    Faheem, Nuhie
    Fetherling, Suzanne
    Gong, Elissa
    Gonzalzles, Eddie Marie
    Granito, Teresa
    Koritsaris, Jenna
    Binh Nguyen
    Ottman, Sujud
    Palffy, Christina
    Patel, Angela
    Skweres, Sheila
    Slaton, Adriane
    Woods, TaRhonda
    Donghia, Nina
    Pardee, Keith
    Collins, James J.
    Jewett, Michael C.
    [J]. SCIENCE ADVANCES, 2018, 4 (08):
  • [67] Swartz James R, 2004, Methods Mol Biol, V267, P169
  • [68] High-Level Production of Amorpha-4,11-Diene, a Precursor of the Antimalarial Agent Artemisinin, in Escherichia coli
    Tsuruta, Hiroko
    Paddon, Christopher J.
    Eng, Diana
    Lenihan, Jacob R.
    Horning, Tizita
    Anthony, Larry C.
    Regentin, Rika
    Keasling, Jay D.
    Renninger, Neil S.
    Newman, Jack D.
    [J]. PLOS ONE, 2009, 4 (02):
  • [69] Cell free biosynthesis of isoprenoids from isopentenol
    Ward, Valerie C. A.
    Chatzivasileiou, Alkiviadis Orfefs
    Stephanopoulos, Gregory
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (12) : 3269 - 3281
  • [70] Systematic Optimization of Limonene Production in Engineered Escherichia coli
    Wu, Jihua
    Cheng, Si
    Cao, Jiayu
    Qao, Jianjun
    Zhao, Guang-Rong
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (25) : 7087 - 7097