Thermal Conductivity for a Momentum Conservative Model

被引:52
作者
Basile, Giada [1 ]
Bernardin, Cedric [2 ]
Olla, Stefano [3 ]
机构
[1] WIAS, D-10117 Berlin, Germany
[2] Univ Lyon, Ecole Normale Super Lyon, CNRS, UMPA, F-69364 Lyon 07, France
[3] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75775 Paris 16, France
关键词
FOURIERS LAW;
D O I
10.1007/s00220-008-0662-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a model whose thermal conductivity diverges in dimension 1 and 2, while it remains finite in dimension 3. We consider a system of oscillators perturbed by a stochastic dynamics conserving momentum and energy. We compute thermal conductivity via Green-Kubo formula. In the harmonic case we compute the current-current time correlation function, that decay like t (-d/2) in the unpinned case and like t (-d/2-1) if an on-site harmonic potential is present. This implies a finite conductivity in d a parts per thousand yen 3 or in pinned cases, and we compute it explicitly. For general anharmonic strictly convex interactions we prove some upper bounds for the conductivity that behave qualitatively as in the harmonic cases.
引用
收藏
页码:67 / 98
页数:32
相关论文
共 17 条
[1]  
BASILE G, 2008, ENERGY TRANSPORT STO
[2]   Momentum conserving model with anomalous thermal conductivity in low dimensional systems [J].
Basile, Giada ;
Bernardin, Cedric ;
Olla, Stefano .
PHYSICAL REVIEW LETTERS, 2006, 96 (20)
[3]   Fourier's law for a microscopic model of heat conduction [J].
Bernardin, C ;
Olla, S .
JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) :271-289
[4]  
BODINEAU T, 2000, AMS IP STUD ADV MATH, V16, P51
[5]   SIMULATION OF NONHARMONIC INTERACTIONS IN A CRYSTAL BY SELF-CONSISTENT RESERVOIRS [J].
BOLSTERLI, M ;
RICH, M ;
VISSCHER, WM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (04) :1086-+
[6]   Fourier's law for a harmonic crystal with self-consistent stochastic reservoirs [J].
Bonetto, F ;
Lebowitz, JL ;
Lukkarinen, J .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :783-813
[7]  
Bonetto F., 2000, Mathematical physics 2000, P128, DOI [10.1142/9781848160224_0008., DOI 10.1142/9781848160224_0008]
[8]   Towards a derivation of fourier's law for coupled anharmonic oscillators [J].
Bricmont, Jean ;
Kupiainen, Antti .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (03) :555-626
[9]   On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to delφ interface model [J].
Delmotte, T ;
Deuschel, JD .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (03) :358-390
[10]  
DIACONIS P, 1987, ANN I H POINCARE-PR, V23, P397