A Segmentation Approach for Mammographic Images and Its Clinical Value

被引:0
|
作者
Egoshin, I. [1 ]
Pasynkov, D. [2 ]
Kolchev, A. [3 ]
Kliouchkin, I. [4 ]
Pasynkova, O. [1 ]
机构
[1] Mari State Univ, Yoshkar Ola 424000, Russia
[2] Oncol Dispenser Mari El Republ, Yoshkar Ola 424037, Russia
[3] Kazan Fed Univ, Kazan 420008, Russia
[4] Kazan State Med Univ, Kazan 420012, Russia
关键词
mammography; image analysis; breast cancer; computer-aided detection; segmentation; SCREENING MAMMOGRAPHY; BREAST DENSITY; CANCERS; INTERVAL; WOMEN; US;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We developed the nested contour algorithm (NCA) - a segmentation method for X-ray mammography images and tested it on a set of 1532 images of 356 women with morphologically proven breast cancer of various characteristics located on different density background. As a result NCA correctly marked 48 of 52 (92.31 %) star-like lesions, 12 of 14 (85.71 %) architectural distortions, 51 of 58 (87.93 %) lesions with irregular shape and unclear margin, all 18 lobular and round lesions, 17 of 18 (94.4 %) partially visualized lesions, 13 of 18 (72.2 %) asymmetric areas and 7 of 16 (43.8 %) unclearly visible or invisible lesions. Overall sensitivity of NCA in our set was 90.73 % (323 of 356 cases). The mean rate of false-positive marks was 1.3 per image - for ACR A-B mammograms and 1.8 - for ACR C-D mammograms.
引用
收藏
页码:306 / 311
页数:6
相关论文
共 50 条
  • [1] EM texture segmentation of mammographic images
    Zwiggelaar, R
    Planiol, P
    Martí, J
    Martí, R
    Blot, L
    Denton, ERE
    Rubin, CME
    DIGITAL MAMMOGRAPHY, PROCEEDINGS, 2003, : 223 - 227
  • [2] Mammographic Images Segmentation using Texture Descriptors
    Mascaro, Angelica A.
    Mello, Carlos A. B.
    Santos, Wellington P.
    Cavalcanti, George D. C.
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 3653 - +
  • [3] SEGMENTATION OF PECTORAL MUSCLE AND DETECTION OF MASSES IN MAMMOGRAPHIC IMAGES
    Kavitha, M.
    Rejusha, M.
    2015 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), 2015, : 1201 - 1204
  • [4] A review of automatic mass detection and segmentation in mammographic images
    Oliver, Arnau
    Freixenet, Jordi
    Marti, Joan
    Perez, Elsa
    Pont, Josep
    Denton, Erika R. E.
    Zwiggelaar, Reyer
    MEDICAL IMAGE ANALYSIS, 2010, 14 (02) : 87 - 110
  • [5] A New Algorithm for Breast Segmentation in Digital Mammographic Images
    Mello, C. A. B.
    Tenorio, T. G.
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 553 - 558
  • [6] Deviation analysis for texture segmentation of breast lesions in mammographic images
    Mughal, Bushra
    Muhammad, Nazeer
    Sharif, Muhammad
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (11):
  • [7] Texture Based Segmentation using Statistical Properties for Mammographic Images
    Kekre, H. B.
    Gharge, Saylee
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2010, 1 (05) : 102 - 107
  • [8] Deviation analysis for texture segmentation of breast lesions in mammographic images
    Bushra Mughal
    Nazeer Muhammad
    Muhammad Sharif
    The European Physical Journal Plus, 133
  • [9] Mammographic images segmentation based on chaotic map clustering algorithm
    Marius Iacomi
    Donato Cascio
    Francesco Fauci
    Giuseppe Raso
    BMC Medical Imaging, 14
  • [10] Pectoral muscle segmentation on mammographic images based on radial lengths
    Chatzistergos, Sevastianos
    Andreadis, Ioannis
    Nikita, Konstantina S.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2016, : 504 - 509