TWISTS OF AUTOMORPHIC L-FUNCTIONS AT THE CENTRAL POINT

被引:1
|
作者
Bui, H. M. [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Automorphic L-functions; nonvanishing; mollifier method; two-piece mollifier; DIRICHLET L-FUNCTIONS; HIGH DERIVATIVES; CENTRAL VALUES; ZETA-FUNCTION; ZEROS; RANK;
D O I
10.1142/S1793042113500115
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the nonvanishing of twists of automorphic L-functions at the center of the critical strip. Given a primitive character chi modulo D satisfying some technical conditions, we prove that the twisted L-functions L(f. chi, s) do not vanish at s = 1/2 for a positive proportion of primitive forms of weight 2 and level q, for large prime q. We also investigate the central values of high derivatives of L(f. chi, s), and from that derive an upper bound for the average analytic rank of the studied L-functions.
引用
收藏
页码:1015 / 1053
页数:39
相关论文
共 50 条
  • [21] BOUNDS FOR AUTOMORPHIC L-FUNCTIONS
    DUKE, W
    FRIEDLANDER, J
    IWANIEC, H
    INVENTIONES MATHEMATICAE, 1993, 112 (01) : 1 - 8
  • [22] L-functions and automorphic representations
    Arthur, James
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I, 2014, : 171 - 197
  • [23] Determining L-functions by twists
    Kisilevsky, H
    JOURNAL OF NUMBER THEORY, 2004, 104 (02) : 287 - 300
  • [24] On the zeroes of automorphic L-functions
    Soulé, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (11): : 955 - 958
  • [25] On the proportion of quadratic character twists of L-functions attached to cusp forms not vanishing at the central point
    Kohnen, W
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 508 : 179 - 187
  • [26] Dirichlet L-functions at the central point
    Iwaniec, H
    Sarnak, P
    NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 941 - 952
  • [27] Fourier coefficients of automorphic L-functions
    Kim, Henry H.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (10) : 2513 - 2521
  • [28] On the Selberg orthogonality for automorphic L-functions
    Muharem Avdispahić
    Lejla Smajlović
    Archiv der Mathematik, 2010, 94 : 147 - 154
  • [29] INTEGRAL MOMENTS OF AUTOMORPHIC L-FUNCTIONS
    Diaconu, Adrian
    Garrett, Paul
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2009, 8 (02) : 335 - 382
  • [30] Zero density for automorphic L-functions
    Ye, Yangbo
    Zhang, Deyu
    JOURNAL OF NUMBER THEORY, 2013, 133 (11) : 3877 - 3901