Map misclassification can cause large errors in landscape pattern indices: Examples from habitat fragmentation

被引:79
作者
Langford, WT
Gergel, SE
Dietterich, TG
Cohen, W
机构
[1] Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA
[2] Univ British Columbia, Dept Forest Sci, Vancouver, BC V6T 1Z4, Canada
[3] Oregon State Univ, Dept Comp Sci, Corvallis, OR 97331 USA
[4] US Forest Serv, Pacific NW Res Stn, USDA, Corvallis, OR 97331 USA
关键词
fragmentation; landscape metrics; landscape pattern indices; spatial error; classification error; thematic map; accuracy assessment; remote sensing; uncertainty;
D O I
10.1007/s10021-005-0119-1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Although habitat fragmentation is one of the greatest threats to biodiversity worldwide, virtually no attention has been paid to the quantification of error in fragmentation statistics. Landscape pattern indices (LPIs), such as mean patch size and number of patches, are routinely used to quantify fragmentation and are often calculated using remote-sensing imagery that has been classified into different land-cover classes. No classified map is ever completely correct, so we asked if different maps with similar misclassification rates could result in widely different errors in pattern indices. We simulated landscapes with varying proportions of habitat and clumpiness (autocorrelation) and then simulated classification errors on the same maps. We simulated higher misclassification at patch edges (as is often observed), and then used a smoothing algorithm routinely used on images to correct salt-and-pepper classification error. We determined how well classification errors (and smoothing) corresponded to errors seen in four pattern indices. Maps with low misclassification rates often yielded errors in LPIs of much larger magnitude and substantial variability. Although smoothing usually improved classification error, it sometimes increased LPI error and reversed the direction of error in LPIs introduced by misclassification. Our results show that classification error is not always a good predictor of errors in LPIs, and some types of image postprocessing (for example, smoothing) might result in the underestimation of habitat fragmentation. Furthermore, our results suggest that there is potential for large errors in nearly every landscape pattern analysis ever published, because virtually none quantify the errors in LPIs themselves.
引用
收藏
页码:474 / 488
页数:15
相关论文
共 42 条