On the existence of generic Bernstein polynomials of an analytic map

被引:0
|
作者
Biosca, H
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1996年 / 322卷 / 07期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of generic Bernstein polynomials of an analytic map germ. We prove their existence for deformations with one parameter and, in the case of several parameters, for deformations of isolated complete intersection singularities as well as for deformations of polynomial maps.
引用
收藏
页码:659 / 662
页数:4
相关论文
共 50 条
  • [31] APPROXIMATION BY BERNSTEIN POLYNOMIALS
    TOTIK, V
    AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (04) : 995 - 1018
  • [32] About Bernstein polynomials
    Farcas, Mircea D.
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2008, 35 : 117 - 121
  • [33] DEGENERATE BERNSTEIN POLYNOMIALS
    FREEDMAN, D
    PASSOW, E
    JOURNAL OF APPROXIMATION THEORY, 1983, 39 (01) : 89 - 92
  • [34] Degenerate Bernstein polynomials
    Kim, Taekyun
    Kim, Dae San
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2913 - 2920
  • [35] On Multivariate Bernstein Polynomials
    Foupouagnigni, Mama
    Mouafo Wouodjie, Merlin
    MATHEMATICS, 2020, 8 (09)
  • [36] GENERALIZED BERNSTEIN POLYNOMIALS
    BUSTOZ, J
    GROETSCH, CW
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (02) : 256 - 262
  • [37] A GENERALIZATION OF BERNSTEIN POLYNOMIALS
    SCHNABL, R
    MATHEMATISCHE ANNALEN, 1968, 179 (01) : 74 - &
  • [38] Generalized Bernstein polynomials
    Agrawal, P. N.
    Bhardwaj, Neha
    Chauhan, Ruchi
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [39] The Abel map for surface singularities II. Generic analytic structure
    Nagy, Janos
    Nemethi, Andras
    ADVANCES IN MATHEMATICS, 2020, 371
  • [40] Generic extensions and generic polynomials
    Ledet, A
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (06) : 867 - 872