Spatial decay and time-asymptotic profiles for solutions of Schrodinger equations

被引:4
作者
Cazenave, T
Weissler, FB
机构
[1] Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, F-75252 Paris 05, France
[2] Univ Paris 13, Inst Galilee, LAGA, CNRS,UMR 7539, F-93430 Villetaneuse, France
关键词
Schrodinger group; Fourier transform; asymptotic behavior; dilation properties; self-similar solutions; scattering theory; dynamical systems; chaos;
D O I
10.1512/iumj.2006.55.2664
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the relationship between the long time behavior of a solution e(it Delta)phi of the Schrodinger equation on R-N and the asymptotic behavior as vertical bar x vertical bar -> infinity of its Initial value phi. Under appropriate hypotheses on phi we show that, for a fixed 0 < sigma < N, if the sequence of dilations lambda(sigma)(n)phi(lambda(n) (.)) converges in S'(R-N) to psi((.)) as lambda(n) -> infinity, then the rescaled solution t(sigma/2)e(it Delta)phi((.)root t) converges in L-r (R-N), for r sufficiently large, to e(i Delta)psi along the subsequence t(n) = lambda(2)(n). Moreover, we show there n exists an initial value phi (in H-infinity(R-N) if sigma > N/2) such that the set of all possible psi attainable in this fashion is a closed ball B of an infinite dimensional Banach space. The resulting "universal" solution is therefore asymptotically close along appropriate subsequences to all solutions with initial values in B. Furthermore, e(i Delta) followed by an appropriate dilation generates a chaotic discrete dynamical system on a compact subset of L-r(R-N). Finally, we prove analogous results for the nonlinear Schrodinger equation.
引用
收藏
页码:75 / 118
页数:44
相关论文
共 12 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES
[2]  
Cazenave T, 2003, DISCRETE CONT DYN S, V9, P1105
[3]   Asymptotically self-similar global solutions of the nonlinear Schrodinger and heat equations [J].
Cazenave, T ;
Weissler, FB .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (01) :83-120
[4]   A note on the nonlinear Schrodinger equation in weak Lp spaces [J].
Cazenave, T ;
Vega, L ;
Vilela, MC .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (01) :153-162
[5]   Scattering theory and self-similar solutions for the nonlinear Schrodinger equation [J].
Cazenave, T ;
Weissler, FB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (03) :625-650
[6]  
Cazenave T, 2003, ANN SCUOLA NORM-SCI, V2, P77
[7]  
Cazenave T, 2005, ADV DIFFERENTIAL EQU, V10, P361
[8]  
DEVANEY RL, 1989, CHAOS FRACTALS MATH, V39, P1
[9]   Regular and self-similar solutions of nonlinear Schrodinger equations [J].
Ribaud, F ;
Youssfi, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (10) :1065-1079
[10]  
Rudin W., 1974, FUNCTIONAL ANAL