Nanotherapy for Duchenne muscular dystrophy

被引:20
作者
Nance, Michael E. [1 ]
Hakim, Chady H. [1 ,2 ]
Yang, N. Nora [2 ]
Duan, Dongsheng [1 ,3 ,4 ,5 ]
机构
[1] Univ Missouri, Sch Med, Dept Microbiol & Immunol, Columbia, MO 65211 USA
[2] NIH, Natl Ctr Adv Translat Sci, Rockville, MD USA
[3] Univ Missouri, Dept Neurol, Columbia, MO 65211 USA
[4] Univ Missouri, Dept Bioengn, Columbia, MO 65211 USA
[5] Univ Missouri, Dept Biomed Sci, Columbia, MO 65211 USA
基金
美国国家卫生研究院;
关键词
FULL-LENGTH DYSTROPHIN; RECOMBINANT ADENOASSOCIATED VIRUS; MEDIATED MICRODYSTROPHIN EXPRESSION; ACID ANTISENSE OLIGONUCLEOTIDES; SKELETAL-MUSCLE TRANSDUCTION; TRANSSPLICING VECTORS EXPAND; HUMAN MINIDYSTROPHIN GENE; EXON SKIPPING ACTIVITY; IN-VIVO; MDX MICE;
D O I
10.1002/wnan.1472
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Duchenne muscular dystrophy (DMD) is a lethal X-linked childhood muscle wasting disease caused by mutations in the dystrophin gene. Nanobiotechnology-based therapies (such as synthetic nanoparticles and naturally existing viral and nonviral nanoparticles) hold great promise to replace and repair the mutated dystrophin gene and significantly change the disease course. While a majority of DMD nanotherapies are still in early preclinical development, several [such as adeno-associated virus (AAV)-mediated systemic micro-dystrophin gene therapy] are advancing for phase I clinical trials. Recent regulatory approval of Ataluren (a nonsense mutation read-through chemical) in Europe and Exondys51 (an exon-skipping antisense oligonucleotide drug) in the United States shall offer critical insight in how to move DMD nanotherapy to human patients. Progress in novel, optimized nano-delivery systems may further improve emerging molecular therapeutic modalities for DMD. Despite these progresses, DMD nanotherapy faces a number of unique challenges. Specifically, the dystrophin gene is one of the largest genes in the genome while nanoparticles have an inherent size limitation per definition. Furthermore, muscle is the largest tissue in the body and accounts for 40% of the body mass. How to achieve efficient bodywide muscle targeting in human patients with nanomedication remains a significant translational hurdle. New creative approaches in the design of the miniature micro-dystrophin gene, engineering of muscle-specific synthetic AAV capsids, and novel nanoparticle-mediated exon-skipping are likely to result in major breakthroughs in DMD therapy. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页数:21
相关论文
共 223 条
[1]   HUMAN DYSTROPHIN EXPRESSION IN MDX MICE AFTER INTRAMUSCULAR INJECTION OF DNA CONSTRUCTS [J].
ACSADI, G ;
DICKSON, G ;
LOVE, DR ;
JANI, A ;
WALSH, FS ;
GURUSINGHE, A ;
WOLFF, JA ;
DAVIES, KE .
NATURE, 1991, 352 (6338) :815-818
[2]   Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation I as augmentation therapeutic strategy approaches in muscular dystrophy [J].
Afzal, Ehsan ;
Zakeri, Saba ;
Keyhanvar, Peyman ;
Bagheri, Meisam ;
Mahjoubi, Parvin ;
Asadian, Mahtab ;
Omoomi, Nogol ;
Dehqanian, Mohammad ;
Ghalandarlaki, Negar ;
Darvishmohammadi, Tahmineh ;
Farjadian, Fatemeh ;
Golvajoee, Mohammad Sadegh ;
Afzal, Shadi ;
Ghaffari, Maryam ;
Cohan, Reza Ahangari ;
Gravand, Amin ;
Ardestani, Mehdi Shafiee .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2013, 8 :2943-2960
[3]  
Agbandje-McKenna M, 2011, METHODS MOL BIOL, V807, P47, DOI 10.1007/978-1-61779-370-7_3
[4]   MicroRNA-486 dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms [J].
Alexander, Matthew S. ;
Carlos Casar, Juan ;
Motohashi, Norio ;
Vieira, Natassia M. ;
Eisenberg, Iris ;
Marshall, Jamie L. ;
Gasperini, Molly J. ;
Lek, Angela ;
Myers, Jennifer A. ;
Estrella, Elicia A. ;
Kang, Peter B. ;
Shapiro, Frederic ;
Rahimov, Fedik ;
Kawahara, Genri ;
Widrick, Jeffrey J. ;
Kunkel, Louis M. .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (06) :2651-2667
[5]   Liposomal drug delivery systems: From concept to clinical applications [J].
Allen, Theresa M. ;
Cullis, Pieter R. .
ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (01) :36-48
[6]   Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Yin, HaiFang ;
Betts, Corinne ;
Lakhal, Samira ;
Wood, Matthew J. A. .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :341-U179
[7]   Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery [J].
Aoki, Yoshitsugu ;
Yokota, Toshifumi ;
Nagata, Tetsuya ;
Nakamura, Akinori ;
Tanihata, Jun ;
Saito, Takashi ;
Duguez, Stephanie M. R. ;
Nagaraju, Kanneboyina ;
Hoffman, Eric P. ;
Partridge, Terence ;
Takeda, Shin'ichi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (34) :13763-13768
[8]   ADENOVIRUS-ASSOCIATED DEFECTIVE VIRUS PARTICLES [J].
ATCHISON, RW ;
CASTO, BC ;
HAMMON, WM .
SCIENCE, 1965, 149 (3685) :754-&
[9]   Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression [J].
Auld, Douglas S. ;
Thorne, Natasha ;
Maguire, William F. ;
Inglese, James .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (09) :3585-3590
[10]   Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells [J].
Bachrach, E ;
Li, S ;
Perez, AL ;
Schienda, J ;
Liadaki, K ;
Volinski, J ;
Flint, A ;
Chamberlain, J ;
Kunkel, LM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (10) :3581-3586