Dimensionally reduced Yang-Mills theories in noncommutative geometry

被引:3
作者
Kalkkinen, J
机构
[1] Department of Theoretical Physics, Uppsala University, S-75108 Uppsala
关键词
noncommutative geometry; Yang-Mills theories; dimensional reduction; D-branes;
D O I
10.1016/S0370-2693(97)00302-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study a class of noncommutative geometries that give rise to dimensionally reduced Yang-Mills theories. The emerging geometries describe sets of copies of an even dimensional manifold. Similarities to the D-branes in string theory are discussed. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:243 / 249
页数:7
相关论文
共 12 条
[1]  
BANKS T, RU9695
[2]   CONNECTION BETWEEN SPACE-TIME SUPERSYMMETRY AND NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH .
PHYSICS LETTERS B, 1994, 332 (3-4) :349-357
[3]   UNIFIED GAUGE-THEORIES IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FELDER, G ;
FROHLICH, J .
PHYSICS LETTERS B, 1992, 296 (1-2) :109-116
[4]   THE GRAVITATIONAL SECTOR IN THE CONNES-LOTT FORMULATION OF THE STANDARD MODEL [J].
CHAMSEDDINE, AH ;
FROHLICH, J ;
GRANDJEAN, O .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6255-6275
[5]   The scalar potential in noncommutative geometry [J].
Chamseddine, AH .
PHYSICS LETTERS B, 1996, 373 (1-3) :61-67
[6]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[7]  
DOUGLAS M, RU9691
[8]  
HO PM, UUHEP9607
[9]   A detailed account of Alain Connes' version of the standard model .4. [J].
Kastler, D ;
Schucker, T .
REVIEWS IN MATHEMATICAL PHYSICS, 1996, 8 (02) :205-228
[10]  
POLCHINSKI J, NSFITP96003