Lignin-Based Solid Polymer Electrolytes: Lignin-Graft-Poly(ethylene glycol)

被引:24
作者
Liu, Hailing [1 ]
Mulderrig, Logan [1 ,2 ]
Hallinan, Daniel, Jr. [1 ,2 ]
Chung, Hoyong [1 ]
机构
[1] Florida A&M Univ, Dept Chem & Biomed Engn, Florida State Univ, Coll Engn, 2525 Pottsdamer St,Suite A131, Tallahassee, FL 32310 USA
[2] Florida State Univ, AeroProp Mechatron & Energy & Ctr, 2003 Levy Ave, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
batteries; biomass; lignin; poly(ethylene glycol); solid polymer electrolytes; MOLECULAR-WEIGHT; MECHANICAL-PROPERTIES; TRANSFERENCE NUMBER; CONDUCTIVITY; COMPOSITES; COPOLYMERS; RAFT;
D O I
10.1002/marc.202000428
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Lignin is an aromatic-rich biomass polymer that is cheap, abundant, and sustainable. However, its application in the solid electrolyte field is rare due to challenges in well-defined polymer synthesis. Herein, the synthesis of lignin-graft-poly(ethylene glycol) (PEG) and its conductivity test for a solid electrolyte application are demonstrated. The main steps of synthesis include functionalization of natural lignin's hydroxyl to alkene, followed by graft-copolymerization of PEG thiol to the lignin via photoredox thiol-ene reaction. Two lignin-graft-PEGs are prepared having 22 wt% lignin (lignin-graft-PEG 550) and 34 wt% lignin (lignin-graft-PEG 2000). Then, new polymer electrolytes for conductivity tests are prepared via addition of lithium bis-trifluoromethanesulfonimide. The polymer graft electrolytes exhibit ionic conductivity up to 1.4 x 10(-4) S cm(-1) at 35 degrees C. The presence of lignin moderately impacts conductivity at elevated temperature compared to homopolymer PEG. Furthermore, the ionic conductivity of lignin-graft-PEG at ambient temperature is significantly higher than homopolymer PEG precedents.
引用
收藏
页数:6
相关论文
共 37 条
[1]   Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (31) :20493-20505
[2]  
Chung HY, 2013, ACS SYM SER, V1144, P373
[3]   Chemistry of lignin-based materials [J].
Chung, Hoyong ;
Washburn, Newell R. .
GREEN MATERIALS, 2013, 1 (03) :137-160
[4]   THE IMPORTANCE OF THE LITHIUM ION TRANSFERENCE NUMBER IN LITHIUM POLYMER CELLS [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
ELECTROCHIMICA ACTA, 1994, 39 (13) :2073-2081
[5]   Lignin Biopolymers in the Age of Controlled Polymerization [J].
Ganewatta, Mitra S. ;
Lokupitiya, Hasala N. ;
Tang, Chuanbing .
POLYMERS, 2019, 11 (07)
[6]   Lithium Metal Stability in Batteries with Block Copolymer Electrolytes [J].
Hallinan, Daniel T. ;
Mullin, Scott A. ;
Stone, Gregory M. ;
Balsara, Nitash P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (03) :A464-A470
[7]   An electrochemical approach to measuring oxidative stability of solid polymer electrolytes for lithium batteries [J].
Hallinan, Daniel T., Jr. ;
Rausch, Alexander ;
McGill, Brandon .
CHEMICAL ENGINEERING SCIENCE, 2016, 154 :34-41
[8]   A universal route towards thermoplastic lignin composites with improved mechanical properties [J].
Hilburg, Shayna L. ;
Elder, Allison N. ;
Chung, Hoyong ;
Ferebee, Rachel L. ;
Bockstaller, Michael R. ;
Washburn, Newell R. .
POLYMER, 2014, 55 (04) :995-1003
[9]  
Kai D., 2018, ACS APPL BIOMATER
[10]   Towards lignin-based functional materials in a sustainable world [J].
Kai, Dan ;
Tan, Mein Jin ;
Chee, Pei Lin ;
Chua, Yun Khim ;
Yap, Yong Liang ;
Loh, Xian Jun .
GREEN CHEMISTRY, 2016, 18 (05) :1175-1200