Low-cost reduced graphene oxide-based conductometric nitrogen dioxide-sensitive sensor on paper

被引:39
作者
Hassinen, Jukka [1 ]
Kauppila, Jussi [1 ,2 ]
Leiro, Jarkko [3 ]
Maattanen, Anni [4 ]
Ihalainen, Petri [4 ]
Peltonen, Jouko [4 ]
Lukkari, Jukka [1 ,5 ]
机构
[1] Univ Turku, Dept Chem, Lab Mat Chem & Chem Anal, Turku 20014, Finland
[2] Univ Jyvaskyla, Natl Doctoral Programme Nanosci NGS Nano, Jyvaskyla 40014, Finland
[3] Univ Turku, Mat Sci Lab, Dept Phys & Astron, Turku 20014, Finland
[4] Abo Akad Univ, Phys Chem Lab, Ctr Excellence Funct Mat FunMat, SF-20500 Turku, Finland
[5] Univ Turku, Turku Univ Ctr Mat & Surfaces MatSurf, Turku 20014, Finland
基金
芬兰科学院;
关键词
Graphene; Gas sensor; Sensor fabrication; Nitrogen dioxide; Printed electronics; Paper substrate; LARGE-AREA; GAS;
D O I
10.1007/s00216-013-6805-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The fabrication concept for a low-cost sensor device using reduced graphene oxide (rGO) as the sensing material on a porous paper substrate is presented. The sensors were characterized using conductivity and capacitance measurements, atomic force microscopy and X-ray photoelectron spectroscopy. The effects of different reducing agents, graphene oxide (GO) flake size and film thickness were studied. The sensor was sensitive to NO2, and devices based on a thin (10-nm) hydrazine-reduced GO layer had the best sensitivity, reaching a 70 % reduction in resistance after 10 min of exposure to 10 ppm NO2. The sensitivity was high enough for the detection of sub-parts per million levels of NO2. Desorption of gas molecules, i.e. the recovery of the sensor, could be accelerated by UV irradiation. The structure and preparation of the sensor are simple and up-scalable, allowing their fabrication in bulk quantities, and the fabrication concept can be applied to other materials, too.
引用
收藏
页码:3611 / 3617
页数:7
相关论文
共 34 条
[1]  
[Anonymous], 1997, IUPAC COMPENDIUM CHE, DOI [10.1351/goldbook, DOI 10.1351/G0LDB00K]
[2]   Molecular photodesorption from single-walled carbon nanotubes [J].
Chen, RJ ;
Franklin, NR ;
Kong, J ;
Cao, J ;
Tombler, TW ;
Zhang, YG ;
Dai, HJ .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2258-2260
[3]   Solution processed reduced graphene oxide ultraviolet detector [J].
Chitara, Basant ;
Krupanidhi, S. B. ;
Rao, C. N. R. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[4]   Highly sensitive NO2 gas sensor based on ozone treated graphene [J].
Chung, Min Gyun ;
Kim, Dai Hong ;
Lee, Hyun Myoung ;
Kim, Taewoo ;
Choi, Jong Ho ;
Seo, Dong Kyun ;
Yoo, Ji-Beom ;
Hong, Seong-Hyeon ;
Kang, Tae June ;
Kim, Yong Hyup .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 166 :172-176
[5]   All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide [J].
Dua, Vineet ;
Surwade, Sumedh P. ;
Ammu, Srikanth ;
Agnihotra, Srikanth Rao ;
Jain, Sujit ;
Roberts, Kyle E. ;
Park, Sungjin ;
Ruoff, Rodney S. ;
Manohar, Sanjeev K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (12) :2154-2157
[6]   Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions [J].
Fernandez-Merino, M. J. ;
Guardia, L. ;
Paredes, J. I. ;
Villar-Rodil, S. ;
Solis-Fernandez, P. ;
Martinez-Alonso, A. ;
Tascon, J. M. D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6426-6432
[7]   Practical Chemical Sensors from Chemically Derived Graphene [J].
Fowler, Jesse D. ;
Allen, Matthew J. ;
Tung, Vincent C. ;
Yang, Yang ;
Kaner, Richard B. ;
Weiller, Bruce H. .
ACS NANO, 2009, 3 (02) :301-306
[8]   Steam Etched Porous Graphene Oxide Network for Chemical Sensing [J].
Han, Tae Hee ;
Huang, Yi-Kai ;
Tan, Alvin T. L. ;
Dravid, Vinayak P. ;
Huang, Jiaxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (39) :15264-15267
[9]  
Hickman AJ, 1976, 695 CR CROWTH DEP EN
[10]   Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles [J].
Hirata, M ;
Gotou, T ;
Horiuchi, S ;
Fujiwara, M ;
Ohba, M .
CARBON, 2004, 42 (14) :2929-2937