Gorenstein projective modules and recollements over triangular matrix rings

被引:16
作者
Li, Huanhuan [1 ]
Zheng, Yuefei [2 ]
Hu, Jiangsheng [3 ]
Zhu, Haiyan [4 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Coll Sci, Yangling, Shaanxi, Peoples R China
[3] Jiangsu Univ Technol, Dept Math, Changzhou 213001, Jiangsu, Peoples R China
[4] Zhejiang Univ Technol, Coll Sci, Hangzhou, Peoples R China
关键词
Gorenstein projective modules; recollements; triangulated categories; triangle-equivalences; SINGULARITY CATEGORIES; TATE COHOMOLOGY; FINITE; DIMENSIONS;
D O I
10.1080/00927872.2020.1775240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Letbe a triangular matrix ring withRandSrings andanR-S-bimodule. We describe Gorenstein projective modules overT. In particular, we refine a result of Enochs, Cortes-Izurdiaga, and Torrecillas [Gorenstein conditions over triangular matrix rings, J. Pure Appl. Algebra 218 (2014), no. 8, 1544-1554]. Also, we consider when the recollement ofrestricts to a recollement of its subcategoryconsisting of complexes with finite Gorenstein projective dimension. As applications, we obtain recollements of the stable categoryand recollements of the Gorenstein defect category
引用
收藏
页码:4932 / 4947
页数:16
相关论文
共 36 条
  • [1] Angeleri Hugel L., 2013, ARXIV13103479
  • [2] On the uniqueness of stratifications of derived module categories
    Angeleri Hugel, Lidia
    Koenig, Steffen
    Liu, Qunhua
    [J]. JOURNAL OF ALGEBRA, 2012, 359 : 120 - 137
  • [3] [Anonymous], 2006, London Mathematical Society Student Texts
  • [4] Auslander M., 1969, Memoirs Amer. Math. Soc., V94
  • [5] Auslander M., 1995, REPRESENTATION THEOR, DOI [10.1017/CBO9780511623608, DOI 10.1017/CBO9780511623608]
  • [6] Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension
    Avramov, LL
    Martsinkovsky, A
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 : 393 - 440
  • [7] HOMOLOGICAL DIMENSIONS OF UNBOUNDED COMPLEXES
    AVRAMOV, LL
    FOXBY, HB
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 71 (2-3) : 129 - 155
  • [8] BEILINSON AA, 1982, ASTERISQUE, P7
  • [9] THE GORENSTEIN DEFECT CATEGORY
    Bergh, Petter Andreas
    Oppermann, Steffen
    Jorgensen, David A.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (02) : 459 - 471
  • [10] Buchweitz Ragnar-Olaf, 1986, MAXIMAL COHEN UNPUB