Quantum continuous time random walk in nonlinear Schrodinger equation with disorder

被引:6
作者
Iomin, A. [1 ]
机构
[1] Technion, Dept Phys, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Quantum nonlinear Schrodinger equation; Liouville equation; Quantum continuous time random walk; Quantum four-mode decay; Fractional Fokker-Planck equation; Subdiffusion; ANDERSON LOCALIZATION; ANOMALOUS DIFFUSION; TRANSPORT; DYNAMICS; DELOCALIZATION; CHAOS;
D O I
10.1016/j.chaos.2016.09.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quantum nonlinear Schrodinger equation in the presence of disorder is considered. The dynamics of an initially localized wave packet is studied and subdiffusion of the wave packet is obtained with a transport exponent 1/2. It is shown that this transport exponent has pure quantum nature. A probabilistic description of subdiffusion in the framework of a quantum continuous time random walk is suggested and a quantum master equation is obtained. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 43 条
[1]   Visualization of exciton transport in ordered and disordered molecular solids [J].
Akselrod, Gleb M. ;
Deotare, Parag B. ;
Thompson, Nicholas J. ;
Lee, Jiye ;
Tisdale, William A. ;
Baldo, Marc A. ;
Menon, Vinod M. ;
Bulovic, Vladimir .
NATURE COMMUNICATIONS, 2014, 5
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[4]   Weak chaos in the disordered nonlinear Schrodinger chain: Destruction of Anderson localization by Arnold diffusion [J].
Basko, D. M. .
ANNALS OF PHYSICS, 2011, 326 (07) :1577-1655
[5]  
Bateman H., 1955, Higher transcendental functions, California Institute of technology. Bateman Manuscript project
[6]  
ben-Avraam D., 2000, DIFFUSION REACTIONS
[7]   On the stability of a quantum dynamics of a Bose-Einstein condensate trapped in a one-dimensional toroidal geometry [J].
Berman, G. P. ;
Bishop, A. R. ;
Dalvit, D. A. R. ;
Shlyapnikov, G. V. ;
Tarkhanov, N. ;
Timmermans, E. M. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (09) :2393-2408
[8]   Quantum dynamics in the Fermi-Pasta-Ulam problem [J].
Berman, G. P. ;
Tarkhanov, N. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (10) :1865-1887
[9]  
Berman G.P., 1986, KIRENSKY I PHYS KRAS, DOI [10.13140/RG.2.2.12071.68001, DOI 10.13140/RG.2.2.12071.68001]
[10]   METHOD OF QUASICLASSICAL APPROXIMATION FOR C-NUMBER PROJECTION IN COHERENT STATES BASIS [J].
BERMAN, GP ;
IOMIN, AM ;
ZASLAVSKY, GM .
PHYSICA D, 1981, 4 (01) :113-121