Perturbative analysis of topological entanglement entropy from conditional independence

被引:23
|
作者
Kim, Isaac H. [1 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
关键词
QUANTUM ENTROPY; STATES;
D O I
10.1103/PhysRevB.86.245116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use the structure of conditionally independent states to analyze the stability of topological entanglement entropy. For the ground state of the quantum double or Levin-Wen model, we obtain a bound on the first-order perturbation of topological entanglement entropy in terms of its energy gap and subsystem size. The bound decreases superpolynomially with the size of the subsystem, provided the energy gap is nonzero. We also study the finite-temperature stability of stabilizer models, for which we prove a stronger statement than the strong subadditivity of entropy. Using this statement and assuming (i) finite correlation length and (ii) small conditional mutual information of certain configurations, first-order perturbation effect for arbitrary local perturbation can be bounded. We discuss the technical obstacles in generalizing these results. DOI: 10.1103/PhysRevB.86.245116
引用
收藏
页数:8
相关论文
共 13 条
  • [1] Entanglement entropy, quantum fluctuations, and thermal entropy in topological phases
    Hu, Yuting
    Wan, Yidun
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
  • [2] Topological entanglement entropy of fracton stabilizer codes
    Ma, Han
    Schmitz, A. T.
    Parameswaran, S. A.
    Hermele, Michael
    Nandkishore, Rahul M.
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [3] Boundary Topological Entanglement Entropy in Two and Three Dimensions
    Bridgeman, Jacob C.
    Brown, Benjamin J.
    Elman, Samuel J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (02) : 1241 - 1276
  • [4] Experimental observation of classical analogy of topological entanglement entropy
    Chen, Tian
    Zhang, Shihao
    Zhang, Yi
    Liu, Yulong
    Kou, Su-Peng
    Sun, Houjun
    Zhang, Xiangdong
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Deciphering the nonlocal entanglement entropy of fracton topological orders
    Shi, Bowen
    Lu, Yuan-Ming
    PHYSICAL REVIEW B, 2018, 97 (14)
  • [6] The holographic entropy cone from marginal independence
    Hernandez-Cuenca, Sergio
    Hubeny, Veronika E.
    Rota, Massimiliano
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [7] Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory
    Chang, Po-Yao
    You, Jhih-Shih
    Wen, Xueda
    Ryu, Shinsei
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [8] Predicting a topological quantum phase transition from dynamics via multisite entanglement
    Lakkaraju, Leela Ganesh Chandra
    Haldar, Sudip Kumar
    Sen, Aditi
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [9] Long-Range Entanglement from Measuring Symmetry-Protected Topological Phases
    Tantivasadakarn, Nathanan
    Thorngren, Ryan
    Vishwanath, Ashvin
    Verresen, Ruben
    PHYSICAL REVIEW X, 2024, 14 (02):
  • [10] Establishing non-Abelian topological order in Gutzwiller-projected Chern insulators via entanglement entropy and modular S-matrix
    Zhang, Yi
    Vishwanath, Ashvin
    PHYSICAL REVIEW B, 2013, 87 (16)