UNCERTAINTY QUANTIFICATION IN MD SIMULATIONS. PART I: FORWARD PROPAGATION

被引:50
作者
Rizzi, F. [2 ]
Najm, H. N. [1 ]
Debusschere, B. J. [1 ]
Sargsyan, K. [1 ]
Salloum, M. [1 ]
Adalsteinsson, H. [1 ]
Knio, O. M. [2 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94550 USA
[2] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
关键词
uncertainty quantification; Bayesian inference; polynomial chaos; molecular dynamics; TIP4P water; adaptive sampling; POTENTIAL FUNCTIONS; WATER MODEL; CONTINUUM; DYNAMICS; FLUID; FLOW; TEMPERATURE; ERGODICITY; BOLTZMANN; EQUATIONS;
D O I
10.1137/110853169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work focuses on quantifying the effect of intrinsic (thermal) noise and parametric uncertainty in molecular dynamics (MD) simulations. We consider isothermal, isobaric MD simulations of TIP4P (or four-site) water at ambient conditions, T = 298 K and P = 1 atm. Parametric uncertainty is assumed to originate from three force-field parameters that are parametrized in terms of standard uniform random variables. The thermal fluctuations inherent in MD simulations combine with parametric uncertainty to yield nondeterministic, noisy MD predictions of bulk water properties. Relying on polynomial chaos (PC) expansions, we develop a framework that enables us to isolate the impact of parametric uncertainty on the MD predictions and control the effect of the intrinsic noise. We construct the PC representations of quantities of interest (QoIs) using two different approaches: nonintrusive spectral projection (NISP) and Bayesian inference. We verify a priori the legitimacy of the NISP approach by verifying that the MD data satisfy regularity and smoothness conditions in the parameter space. The Bayesian inference approach relies on adaptively sampling the parameter space, based on analyzing the convergence of the PC expansions at different approximation levels. We show that for the present case, the effect of the thermal noise in the atomistic system can be controlled, and the MD predictions for the QoIs can be suitably represented using low-order PC models.
引用
收藏
页码:1428 / 1459
页数:32
相关论文
共 49 条
  • [1] Adalsteinsson H, 2008, SCI PROGRAMMING-NETH, V16, P297, DOI [10.1155/2008/738576, 10.3233/SPR-2008-0259]
  • [2] On the ergodicity properties of some adaptive MCMC algorithms
    Andrieu, Christophe
    Moulines, Eric
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (03) : 1462 - 1505
  • [3] [Anonymous], 1996, Statistical mechanics
  • [4] [Anonymous], 2003, Molecular Driving Forces: Statistical Thermodynamics in Chemistry Biology
  • [5] On adaptive Markov chain Monte Carlo algorithms
    Atchadé, YF
    Rosenthal, JS
    [J]. BERNOULLI, 2005, 11 (05) : 815 - 828
  • [6] THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS
    BERENDSEN, HJC
    GRIGERA, JR
    STRAATSMA, TP
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) : 6269 - 6271
  • [7] Coupling Boltzmann and Navier-Stokes equations by friction
    Bourgat, JF
    LeTallec, P
    Tidriri, MD
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (02) : 227 - 245
  • [8] A HYBRID PARTICLE-CONTINUUM METHOD FOR HYDRODYNAMICS OF COMPLEX FLUIDS
    Donev, Aleksandar
    Bell, John B.
    Garcia, Alejandro L.
    Alder, Berni J.
    [J]. MULTISCALE MODELING & SIMULATION, 2010, 8 (03) : 871 - 911
  • [9] Einstein Albert., 1956, INVESTIGATION THEORY
  • [10] Fejer Leopold, 1933, Bulletin (New Series) of the American Mathematical Society, V39, P521