Identifying optimal technological portfolios for European power generation towards climate change mitigation: A robust portfolio analysis approach

被引:18
作者
Forouli, Aikaterini [1 ]
Doukas, Haris [1 ]
Nikas, Alexandros [1 ]
Sampedro, Jon [2 ]
Van de Ven, Dirk-Jan [2 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Decis Support Syst Lab, Iroon Politechniou 9, Athens 15780, Greece
[2] Basque Ctr Climate Change, Edificio Sede 1-1,Parque Cient UPV EHU, Leioa 48940, Spain
关键词
Decision support; Power generation; Technology R&D; Portfolio analysis; Uncertainty; Robustness; INTEGRATED ASSESSMENT MODELS; EPSILON-CONSTRAINT METHOD; ELECTRICITY SECTOR; ENERGY; UNCERTAINTY; PERSPECTIVE; FORMULATION; SYSTEMS; VERSION;
D O I
10.1016/j.jup.2019.01.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Here, an integrative approach is proposed to link integrated assessment modelling results from the GCAM model with a novel portfolio analysis framework. This framework comprises a bi-objective optimisation model, Monte Carlo analysis and the Iterative Trichotomic Approach, aimed at carrying out stochastic uncertainty assessment and enhancing robustness. The approach is applied for identifying optimal technological portfolios for power generation in the EU towards climate change mitigation until 2050. The considered technologies include photovoltaics, concentrated solar power, wind, nuclear, biomass and carbon capture and storage, for which different subsidy curves for emissions reduction and energy security are considered.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 56 条
  • [1] Deriving life cycle assessment coefficients for application in integrated assessment modelling
    Arvesen, Anders
    Luderer, Gunnar
    Pehl, Michaja
    Bodirsky, Benjamin Leon
    Hertwich, Edgar G.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 99 : 111 - 125
  • [2] Awerbuch S, 2004, PREPARED PART DEMONS
  • [3] Awerbuch S., 2003, IEA/EET International Energy Agency, V3, P69
  • [4] Awerbuch S., 2007, EIB Papers, V12, P8
  • [5] Climate change and optimal energy technology R&D policy
    Baker, Erin
    Solak, Senay
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 213 (02) : 442 - 454
  • [6] Comparison of multi-objective optimization methodologies for engineering applications
    Chiandussi, G.
    Codegone, M.
    Ferrero, S.
    Varesio, F. E.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (05) : 912 - 942
  • [7] The integrated Earth system model version 1: formulation and functionality
    Collins, W. D.
    Craig, A. P.
    Truesdale, J. E.
    Di Vittorio, A. V.
    Jones, A. D.
    Bond-Lamberty, B.
    Calvin, K. V.
    Edmonds, J. A.
    Kim, S. H.
    Thomson, A. M.
    Patel, P.
    Zhou, Y.
    Mao, J.
    Shi, X.
    Thornton, P. E.
    Chini, L. P.
    Hurtt, G. C.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (07) : 2203 - 2219
  • [8] Applying portfolio theory to the electricity sector: Energy versus power
    Delarue, Erik
    De Jonghe, Cedric
    Belmans, Ronnie
    D'haeseleer, William
    [J]. ENERGY ECONOMICS, 2011, 33 (01) : 12 - 23
  • [9] Energy planning and modern portfolio theory: A review
    deLlano-Paz, Fernando
    Calvo-Silvosa, Anxo
    Iglesias Antelo, Susana
    Soares, Isabel
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 77 : 636 - 651
  • [10] Decision support models in climate policy
    Doukas, Hans
    Nikas, Alexandros
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 280 (01) : 1 - 24