Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells

被引:24
|
作者
Bae, Eunjin [1 ,2 ]
Kim, Seong-Jin [1 ]
Hong, Suntaek [2 ]
Liu, Fang [3 ,4 ]
Ooshima, Akira [1 ]
机构
[1] CHA Univ, CHA Canc Inst, Lab Cell Regulat & Carcinogenesis, Seoul 135081, South Korea
[2] Gachon Univ, Lee Gil Ya Canc & Diabet Inst, Dept Mol Med, Inchon 406840, South Korea
[3] Rutgers State Univ, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, Ernest Mario Sch Pharm, Susan Lehman Cullman Lab Canc Res, Piscataway, NJ 08854 USA
基金
新加坡国家研究基金会;
关键词
Smad3; phosphorylation; TGF-beta 1-induced EMT; Renal fibrosis; GROWTH-FACTOR-BETA; UNILATERAL URETERAL OBSTRUCTION; CYCLIN-DEPENDENT KINASES; TGF-BETA; TARGETED DISRUPTION; ANTIPROLIFERATIVE FUNCTION; FIBROSIS; DOMAIN; IDENTIFICATION; INHIBITION;
D O I
10.1016/j.bbrc.2012.09.103
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transforming growth factor-beta 1 (TGF-beta 1) has a distinct role in renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. Smad3 plays an essential role in fibrosis initiated by EMT. Phosphorylation of Smad3 in the C-terminal SSXS motif by type I TGF-beta receptor kinase is essential for mediating TGF-beta response. Smad3 activity is also regulated by phosphorylation in the linker region. However, the functional role of Smad3 linker phosphorylation is not well characterized. We now show that Smad3 EPSM mutant, which mutated the four phosphorylation sites in the linker region, markedly enhanced TGF-beta 1-induced EMT of Smad3-deficient primary renal tubular epithelial cells, whereas Smad3 3S-A mutant, which mutated the C-terminal phosphorylation sites, was unable to induce EMT in response to TGF-beta 1. Furthermore, immunoblotting and RT-PCR analysis showed a marked induction of fibrogenic gene expression with a significant reduction in E-cadherin in HK2 human renal epithelial cells expressing Smad3 EPSM. TGF-beta 1 could not induce the expression of alpha-SMA, vimentin, fibronectin and PAI-1 or reduce the expression of E-cadherin in HK2 cells expressing Smad3 3S-A in response to TGF-beta 1. Our results suggest that Smad3 linker phosphorylation has a negative regulatory role on Smad3 transcriptional activity and TGF-beta 1/Smad3-induced renal EMT. Elucidation of mechanism regulating the Smad3 linker phosphorylation can provide a new strategy to control renal fibrosis. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:593 / 599
页数:7
相关论文
共 50 条
  • [31] CREB1 and Smad3 mediate TGF-β3-induced Smad7 expression in rat hepatic stellate cells
    Deng, Liang
    Huang, Lu
    Guo, Qiongya
    Shi, Xiaoyu
    Xu, Keshu
    MOLECULAR MEDICINE REPORTS, 2017, 16 (06) : 8455 - 8462
  • [32] Early growth response protein 2 promotes partial epithelial-mesenchymal transition by phosphorylating Smad3 during renal fibrosis
    Song, Anni
    Yan, Ruiwei
    Xiong, Wei
    Xiang, Huiling
    Huang, Jing
    Jiang, Anni
    Zhang, Chun
    TRANSLATIONAL RESEARCH, 2024, 271 : 13 - 25
  • [33] Sirt1 Activation Ameliorates Renal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway
    Huang, Xin-Zhong
    Wen, Donghai
    Zhang, Min
    Xie, Qionghong
    Ma, Leting
    Guan, Yi
    Ren, Yueheng
    Chen, Jing
    Hao, Chuan-Ming
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2014, 115 (05) : 996 - 1005
  • [34] TGF-β, Smad3 and the process of progressive fibrosis
    Gauldie, J.
    Bonniaud, P.
    Sime, P.
    Ask, K.
    Kolb, M.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2007, 35 : 661 - 664
  • [35] Smaddening Complexity: The Role of Smad3 in Epithelial-Myofibroblast Transition
    Masszi, Andras
    Kapus, Andras
    CELLS TISSUES ORGANS, 2011, 193 (1-2) : 41 - 52
  • [36] Smad3:: A key player in pathogenetic mechanisms dependent on TGF-β
    Roberts, AB
    Russo, A
    Felici, A
    Flanders, KC
    TISSUE REMODELING, 2003, 995 : 1 - 10
  • [37] Linc00511 Knockdown Inhibited TGF-β1-Induced Epithelial-Mesenchymal Transition of Bronchial Epithelial Cells by Targeting miR-16-5p/Smad3
    She, Weiwei
    Sun, Tianshou
    Long, Chengfeng
    Chen, Meiyu
    Chen, Xu
    Liao, Qinxue
    Wang, Mingdong
    AMERICAN JOURNAL OF RHINOLOGY & ALLERGY, 2023, 37 (03) : 313 - 323
  • [38] TGF-β and cancer:: Is Smad3 a repressor of hTERT gene?
    Li, H
    Xu, DK
    Toh, BH
    Liu, JP
    CELL RESEARCH, 2006, 16 (02) : 169 - 173
  • [39] Targeted dephosphorylation of SMAD3 as an approach to impede TGF- β signaling
    Brewer, Abigail
    Zhao, Jin-Feng
    Fasimoye, Rotimi
    Shpiro, Natalia
    Macartney, Thomas J.
    Wood, Nicola T.
    Wightman, Melanie
    Alessi, Dario R.
    Sapkota, Gopal P.
    ISCIENCE, 2024, 27 (08)
  • [40] Smad3 has a critical role in TGF-β-mediated growth inhibition and apoptosis in colonic epithelial cells
    Mithani, SK
    Balch, GC
    Shiou, SR
    Whitehead, RH
    Datta, PK
    Beauchamp, RD
    JOURNAL OF SURGICAL RESEARCH, 2004, 117 (02) : 296 - 305