Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells

被引:24
|
作者
Bae, Eunjin [1 ,2 ]
Kim, Seong-Jin [1 ]
Hong, Suntaek [2 ]
Liu, Fang [3 ,4 ]
Ooshima, Akira [1 ]
机构
[1] CHA Univ, CHA Canc Inst, Lab Cell Regulat & Carcinogenesis, Seoul 135081, South Korea
[2] Gachon Univ, Lee Gil Ya Canc & Diabet Inst, Dept Mol Med, Inchon 406840, South Korea
[3] Rutgers State Univ, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, Ernest Mario Sch Pharm, Susan Lehman Cullman Lab Canc Res, Piscataway, NJ 08854 USA
基金
新加坡国家研究基金会;
关键词
Smad3; phosphorylation; TGF-beta 1-induced EMT; Renal fibrosis; GROWTH-FACTOR-BETA; UNILATERAL URETERAL OBSTRUCTION; CYCLIN-DEPENDENT KINASES; TGF-BETA; TARGETED DISRUPTION; ANTIPROLIFERATIVE FUNCTION; FIBROSIS; DOMAIN; IDENTIFICATION; INHIBITION;
D O I
10.1016/j.bbrc.2012.09.103
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transforming growth factor-beta 1 (TGF-beta 1) has a distinct role in renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. Smad3 plays an essential role in fibrosis initiated by EMT. Phosphorylation of Smad3 in the C-terminal SSXS motif by type I TGF-beta receptor kinase is essential for mediating TGF-beta response. Smad3 activity is also regulated by phosphorylation in the linker region. However, the functional role of Smad3 linker phosphorylation is not well characterized. We now show that Smad3 EPSM mutant, which mutated the four phosphorylation sites in the linker region, markedly enhanced TGF-beta 1-induced EMT of Smad3-deficient primary renal tubular epithelial cells, whereas Smad3 3S-A mutant, which mutated the C-terminal phosphorylation sites, was unable to induce EMT in response to TGF-beta 1. Furthermore, immunoblotting and RT-PCR analysis showed a marked induction of fibrogenic gene expression with a significant reduction in E-cadherin in HK2 human renal epithelial cells expressing Smad3 EPSM. TGF-beta 1 could not induce the expression of alpha-SMA, vimentin, fibronectin and PAI-1 or reduce the expression of E-cadherin in HK2 cells expressing Smad3 3S-A in response to TGF-beta 1. Our results suggest that Smad3 linker phosphorylation has a negative regulatory role on Smad3 transcriptional activity and TGF-beta 1/Smad3-induced renal EMT. Elucidation of mechanism regulating the Smad3 linker phosphorylation can provide a new strategy to control renal fibrosis. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:593 / 599
页数:7
相关论文
共 50 条
  • [1] Phosphorylation status at Smad3 linker region modulates transforming growth factor-β-induced epithelial-mesenchymal transition and cancer progression
    Ooshima, Akira
    Park, Jinah
    Kim, Seong-Jin
    CANCER SCIENCE, 2019, 110 (02) : 481 - 488
  • [2] Essential role for Smad3 in angiotensin II-induced tubular epithelial-mesenchymal transition
    Yang, Fuye
    Huang, Xiao Ru
    Chung, Arthur C. K.
    Hou, Chun-Cheng
    Lai, Kar Neng
    Lan, Hui Yao
    JOURNAL OF PATHOLOGY, 2010, 221 (04): : 390 - 401
  • [3] Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation
    Park, Sujin
    Yang, Kyung-Min
    Park, Yuna
    Hong, Eunji
    Hong, Chang Pyo
    Park, Jinah
    Pang, Kyoungwha
    Lee, Jihee
    Park, Bora
    Lee, Siyoung
    An, Haein
    Kwak, Mi-Kyung
    Kim, Junil
    Kang, Jin Muk
    Kim, Pyunggang
    Xiao, Yang
    Nie, Guangjun
    Ooshima, Akira
    Kim, Seong-Jin
    JOURNAL OF CANCER PREVENTION, 2018, 23 (01) : 1 - 9
  • [4] Smad3 is key to TGF-β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis
    Roberts, AB
    Tian, F
    Byfield, SD
    Stuelten, C
    Ooshima, A
    Saika, S
    Flanders, KC
    CYTOKINE & GROWTH FACTOR REVIEWS, 2006, 17 (1-2) : 19 - 27
  • [5] Role of Smad3 signaling in the epithelial-mesenchymal transition of the lens epithelium following injury
    Meng, Fanlan
    Li, Jun
    Yang, Xiao
    Yuan, Xiaoyong
    Tang, Xin
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 42 (02) : 851 - 860
  • [6] TGF-β1-induced epithelial-mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in Human A549 lung cancer cells
    Ko, Hyeonseok
    So, Youngsin
    Jeon, Hyelin
    Jeong, Mi-Hyeon
    Choi, Hyo-Kyoung
    Ryu, Seung-Hee
    Lee, Sang-Wook
    Yoon, Ho-Geun
    Choi, Kyung-Chul
    CANCER LETTERS, 2013, 335 (01) : 205 - 213
  • [7] Baicalin and puerarin reverse epithelial-mesenchymal transition via the TGF-1/Smad3 pathway in vitro
    Wu, Tao
    Liu, Tao
    Xing, Lianjun
    Ji, Guang
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2018, 16 (03) : 1968 - 1974
  • [8] Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro
    Meng, Xiao-Ming
    Huang, Xiao Ru
    Xiao, Jun
    Chung, Arthur C. K.
    Qin, Wei
    Chen, Hai-yong
    Lan, Hui Yao
    KIDNEY INTERNATIONAL, 2012, 81 (03) : 266 - 279
  • [9] Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-β in human normal lung epithelial cells
    Yanagisawa, K
    Osada, H
    Masuda, A
    Kondo, M
    Saito, T
    Yatabe, Y
    Takagi, K
    Takahashi, T
    Takahashi, T
    ONCOGENE, 1998, 17 (13) : 1743 - 1747
  • [10] DHT Selectively Reverses Smad3-Mediated/TGF-β-Induced Responses through Transcriptional Down-Regulation of Smad3 in Prostate Epithelial Cells
    Song, Kyung
    Wang, Hui
    Krebs, Tracy L.
    Wang, Bingcheng
    Kelley, Thomas J.
    Danielpour, David
    MOLECULAR ENDOCRINOLOGY, 2010, 24 (10) : 2019 - 2029