A DEEP REINFORCEMENT LEARNING APPROACH TO FLOCKING AND NAVIGATION OF UAVS IN LARGE-SCALE COMPLEX ENVIRONMENTS

被引:0
|
作者
Wang, Chao [1 ]
Wang, Jian [1 ]
Zhang, Xudong [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
来源
2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018) | 2018年
关键词
UAV flocking; UAV navigation; flocking control; deep reinforcement learning; AGENTS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims at enabling unmanned aerial vehicles (UAV) to flock and meanwhile perform navigation tasks in large-scale complex environments in a fully decentralized manner. By incorporating the insights of flocking control inspired by bird flocking in nature, the problem is structured as a Markov decision process and solved by deep reinforcement learning. In particular, coordination among agents is achieved by following a local interaction protocol that each agent only considers the relative position of the nearest two neighbors on its left side and right side. In addition, a flocking control-inspired reward scheme is designed for the emergence of flocking and navigation behaviors. Simulation results demonstrate that by training with three UAVs, the learned policy, shared across all agents, can enable a larger number of UAVs to perform navigation tasks as a group in large-scale complex environments.
引用
收藏
页码:1228 / 1232
页数:5
相关论文
共 50 条
  • [21] Deep Reinforcement Learning Approach for Flocking Control of Multi-agents
    Zhang, Han
    Cheng, Jin
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5002 - 5007
  • [22] Distributed Hierarchical Deep Reinforcement Learning for Large-Scale Grid Emergency Control
    Chen, Yixi
    Zhu, Jizhong
    Liu, Yun
    Zhang, Le
    Zhou, Jialin
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 4446 - 4458
  • [23] Dispatch of UAVs for Urban Vehicular Networks: A Deep Reinforcement Learning Approach
    Oubbati, Omar Sami
    Atiquzzaman, Mohammed
    Baz, Abdullah
    Alhakami, Hosam
    Ben-Othman, Jalel
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (12) : 13174 - 13189
  • [24] Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control
    Chu, Tianshu
    Wang, Jie
    Codeca, Lara
    Li, Zhaojian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) : 1086 - 1095
  • [25] A LARGE-SCALE PATH PLANNING ALGORITHM FOR UNDERWATER ROBOTS BASED ON DEEP REINFORCEMENT LEARNING
    Wang, Wenhui
    Li, Leqing
    Ye, Fumeng
    Peng, Yumin
    Ma, Yiming
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2024, 39 (03) : 204 - 210
  • [26] Multi-Robot Flocking Control Based on Deep Reinforcement Learning
    Zhu, Pengming
    Dai, Wei
    Yao, Weijia
    Ma, Junchong
    Zeng, Zhiwen
    Lu, Huimin
    IEEE ACCESS, 2020, 8 : 150397 - 150406
  • [27] A Q-Learning Approach to Flocking With UAVs in a Stochastic Environment
    Hung, Shao-Ming
    Givigi, Sidney N.
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (01) : 186 - 197
  • [28] Deep Reinforcement Learning for Vision-Based Navigation of UAVs in Avoiding Stationary and Mobile Obstacles
    Kalidas, Amudhini P.
    Joshua, Christy Jackson
    Md, Abdul Quadir
    Basheer, Shakila
    Mohan, Senthilkumar
    Sakri, Sapiah
    DRONES, 2023, 7 (04)
  • [29] Leaving the NavMesh: An Ablative Analysis of Deep Reinforcement Learning for Complex Navigation in 3D Virtual Environments
    Grant, Dale
    Garcia, Jaime
    Raffe, William
    ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT II, 2024, 14472 : 286 - 297
  • [30] An Efficient Deep Reinforcement Learning Framework for UAVs
    Zhou, Shanglin
    Li, Bingbing
    Ding, Caiwu
    Lu, Lu
    Ding, Caiwen
    PROCEEDINGS OF THE TWENTYFIRST INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2020), 2020, : 323 - 328