Attentive Knowledge-aware Graph Convolutional Networks with Collaborative Guidance for Personalized Recommendation

被引:42
作者
Chen, Yankai [1 ]
Yang, Yaming [2 ]
Wang, Yujing [2 ]
Bai, Jing [2 ]
Song, Xiangchen [3 ]
King, Irwin [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
[3] Carnegie Mellon Univ, Dept Machine Learning, Pittsburgh, PA 15213 USA
来源
2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022) | 2022年
关键词
Knowledge-aware Recommendation; Knowledge Graphs; Graph Convolutional Networks; Collaborative Guidance;
D O I
10.1109/ICDE53745.2022.00027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To alleviate data sparsity and cold-start problems of traditional recommender systems (RSs), incorporating knowledge graphs (KGs) to supplement auxiliary information has attracted considerable attention recently. However, simply integrating KGs in current KG-based RS models is not necessarily a guarantee to improve the recommendation performance, which may even weaken the holistic model capability. This is because the construction of these KGs is independent of the collection of historical user-item interactions; hence, information in these KGs may not always be helpful for recommendation to all users. In this paper, we propose attentive Knowledge-aware Graph convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR). CG-KGR is a novel knowledge aware recommendation model that enables ample and coherent learning of KGs and user-item interactions, via our proposed Collaborative Guidance Mechanism. Specifically, CG-KGR first encapsulates historical interactions to interactive information summarization. Then CG-KGR utilizes it as guidance to extract information out of KGs, which eventually provides more precise personalized recommendation. We conduct extensive experiments on four real-world datasets over two recommendation tasks, i.e., Top-K recommendation and Click-Through rate (CTR) prediction. The experimental results show that the CG-KGR model significantly outperforms recent state-of-the-art models by 1.4-27.0% in terms of Recall metric on Top-K recommendation.
引用
收藏
页码:299 / 311
页数:13
相关论文
共 46 条
[1]  
[Anonymous], 2017, P INT C LEARN REPR T
[2]  
[Anonymous], 2008, P 14 ACM SIGKDD INT, DOI DOI 10.1145/1401890.1401944
[3]   Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences [J].
Cao, Yixin ;
Wang, Xiang ;
He, Xiangnan ;
Hu, Zikun ;
Chua, Tat-Seng .
WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, :151-161
[4]   Bundle Recommendation with Graph Convolutional Networks [J].
Chang, Jianxin ;
Gao, Chen ;
He, Xiangnan ;
Jin, Depeng ;
Li, Yong .
PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, :1673-1676
[5]   Sequence-Aware Factorization Machines for Temporal Predictive Analytics [J].
Chen, Tong ;
Yin, Hongzhi ;
Quoc Viet Hung Nguyen ;
Peng, Wen-Chih ;
Li, Xue ;
Zhou, Xiaofang .
2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, :1405-1416
[6]  
Chen YK, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3544
[7]  
Defferrard M, 2016, ADV NEUR IN, V29
[8]   Graph Neural Networks for Social Recommendation [J].
Fan, Wenqi ;
Ma, Yao ;
Li, Qing ;
He, Yuan ;
Zhao, Eric ;
Tang, Jiliang ;
Yin, Dawei .
WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, :417-426
[9]   Effective and efficient attributed community search [J].
Fang, Yixiang ;
Cheng, Reynold ;
Chen, Yankai ;
Luo, Siqiang ;
Hu, Jiafeng .
VLDB JOURNAL, 2017, 26 (06) :803-828
[10]  
Gao YF, 2021, Arxiv, DOI arXiv:2102.08633