Symmetries of discrete dynamical systems involving two species

被引:22
作者
Gómez-Ullate, D [1 ]
Lafortune, S
Winternitz, P
机构
[1] Univ Complutense, Fac Ciencias Fis, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.1063/1.532728
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lie point symmetries of a coupled system of two nonlinear differential-difference equations are investigated. It is shown that in special cases the symmetry group can be infinite dimensional, in other cases up to ten dimensional. The equations can describe the interaction of two long molecular chains, each involving one type of atoms. (C) 1999 American Institute of Physics. [S0022-2488(99)03206-5].
引用
收藏
页码:2782 / 2804
页数:23
相关论文
共 15 条
[1]   QUASISOLITONS ON A DIATOMIC CHAIN AT ROOM-TEMPERATURE [J].
CAMPA, A ;
GIANSANTI, A ;
TENENBAUM, A ;
LEVI, D ;
RAGNISCO, O .
PHYSICAL REVIEW B, 1993, 48 (14) :10168-10182
[2]  
DORODNITSYN VA, 1995, SYMMETRIES INTEGRABI
[3]  
Dorodnitsyn VA, 1991, J Soviet Math, V55, P1490, DOI [10.1007/BF01097535, DOI 10.1007/BF01097535]
[4]   Symmetries of the heat equation on the lattice [J].
Floreanini, R ;
Negro, J ;
Nieto, LM ;
Vinet, L .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (04) :351-355
[5]   LIE SYMMETRIES OF FINITE-DIFFERENCE EQUATIONS [J].
FLOREANINI, R ;
VINET, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (12) :7024-7042
[6]  
Jacobson N., 1979, LIE ALGEBRAS
[7]   Lie group formalism for difference equations [J].
Levi, D ;
Vinet, L ;
Winternitz, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02) :633-649
[8]   Symmetries of discrete dynamical systems [J].
Levi, D ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (11) :5551-5576
[9]   SYMMETRIES AND CONDITIONAL SYMMETRIES OF DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
LEVI, D ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (08) :3713-3730
[10]   CONTINUOUS SYMMETRIES OF DISCRETE EQUATIONS [J].
LEVI, D ;
WINTERNITZ, P .
PHYSICS LETTERS A, 1991, 152 (07) :335-338