FROM STEINER TRIPLE SYSTEMS TO 3-SUN SYSTEMS

被引:4
作者
Fu, Chin-Mei [1 ]
Jhuang, Nan-Hua [1 ]
Lin, Yuan-Lung [1 ]
Sung, Hsiao-Ming [1 ]
机构
[1] Tamkang Univ, Dept Math, Taipei 251, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2012年 / 16卷 / 02期
关键词
Steiner triple system; 3-Sun; 3-Sun system; Cyclic; Decomposition;
D O I
10.11650/twjm/1500406600
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n-sun is the graph with 2n vertices consisting of an n-cycle with n pendent edges which form a 1-factor. In this paper we show that the necessary and sufficient conditions for the decomposition of complete tripartite graphs with at least two partite sets having the same size into 3-suns and give another construction to get a 3-sun system of order n, for n equivalent to 0,1,4,9 (mod 12). In the construction we metamorphose a Steiner triple system into a 3-sun system. We then embed a cyclic Steiner triple system of order n into a 3-sun system of order 2n - 1, for n equivalent to 1 (mod 6).
引用
收藏
页码:531 / 543
页数:13
相关论文
共 6 条
[1]  
Anderson I., 1990, COMBINATORIAL DESIGN
[2]  
Colbourn C.J., 1999, OX MATH M
[3]  
Kirkman T.P., 1847, Cambridge and Dublin Mathematics, V2, P191
[4]  
Lindner C. C., 1997, DESIGN THEOREY
[5]  
Wallis WD., 1988, Combinatorial Designs
[6]  
Yin J. X., 1988, LECT NOTES PURE APPL, V126, P201