Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction

被引:74
|
作者
Dai, James Y. [1 ]
Kooperberg, Charles [1 ]
Leblanc, Michael [1 ]
Prentice, Ross L. [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
Case-only estimator; Filtering; Gene-treatment interaction; Multiple testing; Pharmacogenetics; Randomization; MAXIMUM-LIKELIHOOD-ESTIMATION; FAMILY-BASED ASSOCIATION; FALSE DISCOVERY RATE; FGFR2; GENE; MODELS; SUSCEPTIBILITY; POWER;
D O I
10.1093/biomet/ass044
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several two-stage multiple testing procedures have been proposed to detect gene-environment interaction in genome-wide association studies. In this article, we elucidate general conditions that are required for validity and power of these procedures, and we propose extensions of two-stage procedures using the case-only estimator of gene-treatment interaction in randomized clinical trials. We develop a unified estimating equation approach to proving asymptotic independence between a filtering statistic and an interaction test statistic in a range of situations, including marginal association and interaction in a generalized linear model with a canonical link. We assess the performance of various two-stage procedures in simulations and in genetic studies from Women's Health Initiative clinical trials.
引用
收藏
页码:929 / 944
页数:16
相关论文
共 50 条
  • [1] Two-stage strategies for detecting gene-environment interaction in a genome wide association study
    Volk, H. E.
    Lewinger, J. P.
    Thomas, D. C.
    GENETIC EPIDEMIOLOGY, 2007, 31 (06) : 649 - 649
  • [2] Efficient Testing of Gene-Environment Interaction in Genome-wide Association Studies
    Murcray, Cassandra E.
    Lewinger, Juan Pablo
    Gauderman, W. James
    GENETIC EPIDEMIOLOGY, 2009, 33 (08) : 774 - 775
  • [3] Gene-Environment Interaction in Genome-Wide Association Studies
    Murcray, Cassandra E.
    Lewinger, Juan Pablo
    Gauderman, W. James
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 169 (02) : 219 - 226
  • [4] Improved two-step testing of genome-wide gene-environment interactions
    Kawaguchi, Eric S. S.
    Kim, Andre E. E.
    Lewinger, Juan Pablo
    Gauderman, W. James
    GENETIC EPIDEMIOLOGY, 2023, 47 (02) : 152 - 166
  • [5] Exploiting gene-environment interaction in genome-wide association scans
    Kraft, Peter
    ANNALS OF HUMAN GENETICS, 2007, 71 : 557 - 558
  • [6] Genome-Wide Meta-Regression of Gene-Environment Interaction
    Xu, Xiaoxiao
    Shi, Gang
    Nehorai, Arye
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 62 - 65
  • [7] Efficient Genome-Wide Association Testing of Gene-Environment Interaction in Case-Parent Trios
    Gauderman, W. James
    Thomas, Duncan C.
    Murcray, Cassandra E.
    Conti, David
    Li, Dalin
    Lewinger, Juan Pablo
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 172 (01) : 116 - 122
  • [8] Powerful Cocktail Methods for Detecting Genome-Wide Gene-Environment Interaction
    Hsu, Li
    Jiao, Shuo
    Dai, James Y.
    Hutter, Carolyn
    Peters, Ulrike
    Kooperberg, Charles
    GENETIC EPIDEMIOLOGY, 2012, 36 (03) : 183 - 194
  • [9] Incorporating transcriptome data to study genome-wide gene-environment interaction
    Coombes, Brandon J.
    Larrabee, Beth
    Sicotte, Hugues
    McElroy, Sue L.
    Frye, Mark A.
    Yolken, Robert
    Biernacka, Joanna M.
    GENETIC EPIDEMIOLOGY, 2018, 42 (07) : 694 - 694
  • [10] Application of Genome-wide Gene-environment Interaction Methods: The SEED Autism Study
    Ladd-Acosta, Christine
    Lee, Brian K.
    Bonner, Joseph
    Sheppard, Brooke
    Gidaya, Nicole
    Weiss, Lauren
    Quinn, Jeffrey
    Windham, Gayle
    Reynolds, Ann
    Croen, Lisa
    Schendel, Diana
    Newschaffer, Craig
    Fallin, Daniele
    GENETIC EPIDEMIOLOGY, 2012, 36 (07) : 757 - 757