Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction

被引:76
作者
Dai, James Y. [1 ]
Kooperberg, Charles [1 ]
Leblanc, Michael [1 ]
Prentice, Ross L. [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
Case-only estimator; Filtering; Gene-treatment interaction; Multiple testing; Pharmacogenetics; Randomization; MAXIMUM-LIKELIHOOD-ESTIMATION; FAMILY-BASED ASSOCIATION; FALSE DISCOVERY RATE; FGFR2; GENE; MODELS; SUSCEPTIBILITY; POWER;
D O I
10.1093/biomet/ass044
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several two-stage multiple testing procedures have been proposed to detect gene-environment interaction in genome-wide association studies. In this article, we elucidate general conditions that are required for validity and power of these procedures, and we propose extensions of two-stage procedures using the case-only estimator of gene-treatment interaction in randomized clinical trials. We develop a unified estimating equation approach to proving asymptotic independence between a filtering statistic and an interaction test statistic in a range of situations, including marginal association and interaction in a generalized linear model with a canonical link. We assess the performance of various two-stage procedures in simulations and in genetic studies from Women's Health Initiative clinical trials.
引用
收藏
页码:929 / 944
页数:16
相关论文
共 35 条
[1]   Limitations of the case-only design for identifying gene-environment interactions [J].
Albert, PS ;
Ratnasinghe, D ;
Tangrea, J ;
Wacholder, S .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2001, 154 (08) :687-693
[2]   A haplotype map of the human genome [J].
Altshuler, D ;
Brooks, LD ;
Chakravarti, A ;
Collins, FS ;
Daly, MJ ;
Donnelly, P ;
Gibbs, RA ;
Belmont, JW ;
Boudreau, A ;
Leal, SM ;
Hardenbol, P ;
Pasternak, S ;
Wheeler, DA ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Zeng, CQ ;
Gao, Y ;
Hu, HR ;
Hu, WT ;
Li, CH ;
Lin, W ;
Liu, SQ ;
Pan, H ;
Tang, XL ;
Wang, J ;
Wang, W ;
Yu, J ;
Zhang, B ;
Zhang, QR ;
Zhao, HB ;
Zhao, H ;
Zhou, J ;
Gabriel, SB ;
Barry, R ;
Blumenstiel, B ;
Camargo, A ;
Defelice, M ;
Faggart, M ;
Goyette, M ;
Gupta, S ;
Moore, J ;
Nguyen, H ;
Onofrio, RC ;
Parkin, M ;
Roy, J ;
Stahl, E ;
Winchester, E ;
Ziaugra, L ;
Shen, Y .
NATURE, 2005, 437 (7063) :1299-1320
[3]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Independent filtering increases detection power for high-throughput experiments [J].
Bourgon, Richard ;
Gentleman, Robert ;
Huber, Wolfgang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) :9546-9551
[6]  
Casella G., 2002, Statistical inference, V2nd edition
[7]   Serniparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies [J].
Chatterjee, N ;
Carroll, RJ .
BIOMETRIKA, 2005, 92 (02) :399-418
[8]   Gene-Environment Interactions in Genome-Wide Association Studies: A Comparative Study of Tests Applied to Empirical Studies of Type 2 Diabetes [J].
Cornelis, Marilyn C. ;
Tchetgen, Eric J. Tchetgen ;
Liang, Liming ;
Qi, Lu ;
Chatterjee, Nilanjan ;
Hu, Frank B. ;
Kraft, Peter .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 (03) :191-202
[9]   Simultaneously Testing for Marginal Genetic Association and Gene-Environment Interaction [J].
Dai, James Y. ;
Logsdon, Benjamin A. ;
Huang, Ying ;
Hsu, Li ;
Reiner, Alexander P. ;
Prentice, Ross L. ;
Kooperberg, Charles .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 176 (02) :164-173
[10]   Semiparametric Estimation Exploiting Covariate Independence in Two-Phase Randomized Trials [J].
Dai, James Y. ;
LeBlanc, Michael ;
Kooperberg, Charles .
BIOMETRICS, 2009, 65 (01) :178-187