Kernel-Mapping Recommender system algorithms

被引:33
作者
Ghazanfar, Mustansar Ali [1 ]
Pruegel-Bennett, Adam [1 ]
Szedmak, Sandor [2 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Innsbruck, A-6020 Innsbruck, Austria
关键词
Recommender systems; Structure learning; Linear operation; Maximum margin; Kernel;
D O I
10.1016/j.ins.2012.04.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recommender systems apply machine learning techniques for filtering unseen information and can predict whether a user would like a given item. In this paper, we propose a new algorithm that we call the Kernel-Mapping Recommender (KMR), which uses a novel structure learning technique. This paper makes the following contributions: we show how (1) user-based and item-based versions of the KMR algorithm can be built; (2) user-based and item-based versions can be combined; (3) more information-features, genre, etc.-can be employed using kernels and how this affects the final results; and (4) to make reliable recommendations under sparse, cold-start, and long tail scenarios. By extensive experimental results on five different datasets, we show that the proposed algorithms outperform or give comparable results to other state-of-the-art algorithms. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 104
页数:24
相关论文
共 62 条
  • [51] Schickel-Zuber Vincent, 2006, PROCEEDING THEWORKSH, P102
  • [52] A google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0
    Serrano-Guerrero, Jesus
    Herrera-Viedma, Enrique
    Olivas, Jose A.
    Cerezo, Andres
    Romero, Francisco P.
    [J]. INFORMATION SCIENCES, 2011, 181 (09) : 1503 - 1516
  • [53] Shardanand U., 1995, Human Factors in Computing Systems. CHI'95 Conference Proceedings, P210, DOI 10.1145/223904.223931
  • [54] Srebro N., 2005, P ADV NEUR INF PROC, P1329
  • [55] Stern DavidH., 2009, WWW, P111
  • [56] Szedmak S, 2010, JMLR WORKSH CONF PRO, V11, P96
  • [57] Takacs G., 2008, P 2 KDD WORKSH LARG, P6
  • [58] Takács G, 2009, J MACH LEARN RES, V10, P623
  • [59] PHOAKS: A system for sharing recommendations
    Terveen, L
    Hill, W
    Amento, B
    McDonald, D
    Crete, J
    [J]. COMMUNICATIONS OF THE ACM, 1997, 40 (03) : 59 - 62
  • [60] Using SVD and demographic data for the enhancement of generalized Collaborative Filtering
    Vozalis, M. G.
    Margaritis, K. G.
    [J]. INFORMATION SCIENCES, 2007, 177 (15) : 3017 - 3037