p-adic Eisenstein-Kronecker series and non-critical values of p-adic Hecke L-function of an imaginary quadratic field when the conductor is divisible by p

被引:0
作者
Hirotsune, Tomoki [1 ]
机构
[1] Keio Univ, Dept Math, Yokohama, Kanagawa 2238522, Japan
关键词
Hecke L-function; p-adic L-function; Elliptic curve; Complex multiplication; Coleman function; Eisenstein-Kronecker series; SYNTOMIC REGULATORS; CURVES; INTERPOLATION; POLYLOGARITHM;
D O I
10.1016/j.jnt.2013.07.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. We relate non-critical special values of p-adic L-functions associated to algebraic Hecke characters of an imaginary quadratic number field with class number one to p-adic Eisenstein-Kronecker series constructed as the Coleman function, when the conductors of the algebraic Hecke characters are divisible by p. Video. For a video summary of this paper, please click here or visit http://youtu.be/AZemqgfp5pQ. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:301 / 333
页数:33
相关论文
共 32 条
[1]  
[Anonymous], ERGEB MATH GRENZGEB
[2]  
[Anonymous], 1994, GRAD TEXTS MATH
[3]  
Bannai K., 2008, PREPRINT
[4]  
Bannai K., 2011, RIMS KOKYUROKU BESSA, P9
[5]  
Bannai K, 2010, ANN SCI ECOLE NORM S, V43, P185
[6]   ALGEBRAIC THETA FUNCTIONS AND THE p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS [J].
Bannai, Kenichi ;
Kobayashi, Shinichi .
DUKE MATHEMATICAL JOURNAL, 2010, 153 (02) :229-295
[7]  
Beilinson AA., 1985, J. Soviet Math., V30, P2036, DOI 10.1007/BF02105861
[8]  
Berthelot P., 1996, Cohomologie rigide et cohomologie rigide a supports propres
[9]   A generalization of Coleman's p-adic integration theory [J].
Besser, A .
INVENTIONES MATHEMATICAE, 2000, 142 (02) :397-434
[10]   Syntomic regulators and p-adic integration II:: K2 of curves [J].
Besser, A .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) :335-359