Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview

被引:107
作者
Averianova, Liudmila A. [1 ]
Balabanova, Larissa A. [1 ,2 ]
Son, Oksana M. [1 ,3 ]
Podvolotskaya, Anna B. [1 ,3 ]
Tekutyeva, Liudmila A. [1 ,3 ]
机构
[1] Far Eastern Fed Univ, Sch Econ & Management, Dept Bioecon & Food Secur, Vladivostok, Russia
[2] Russian Acad Sci, Far Eastern Branch, GB Elyakov Pacific Inst Bioorgan Chem, Marine Biochem Lab, Vladivostok, Russia
[3] ARNIKA, Terr PDA Nadezhdinskaya, Primorsky Krai, Russia
关键词
riboflavin; vitamin B2; genetically modified microorganisms; food; feed additive; metabolic engineering; RECOMBINANT BACILLUS-SUBTILIS; LACTIC-ACID BACTERIA; ASHBYA-GOSSYPII; LACTOCOCCUS-LACTIS; MOLECULAR CHARACTERIZATION; STRESS-RESPONSE; CANDIDA-FAMATA; BIOSYNTHESIS; OPTIMIZATION; PATHWAY;
D O I
10.3389/fbioe.2020.570828
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Riboflavin is a crucial micronutrient that is a precursor to coenzymes flavin mononucleotide and flavin adenine dinucleotide, and it is required for biochemical reactions in all living cells. For decades, one of the most important applications of riboflavin has been its global use as an animal and human nutritional supplement. Being well-informed of the latest research on riboflavin production via the fermentation process is necessary for the development of new and improved microbial strains using biotechnology and metabolic engineering techniques to increase vitamin B2 yield. In this review, we describe well-known industrial microbial producers, namely, Ashbya gossypii, Bacillus subtilis, and Candida spp. and summarize their biosynthetic pathway optimizations through genetic and metabolic engineering, combined with random chemical mutagenesis and rational medium components to increase riboflavin production.
引用
收藏
页数:23
相关论文
共 121 条
  • [1] Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers
    Abbas, Charles A.
    Sibirny, Andriy A.
    [J]. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2011, 75 (02) : 321 - +
  • [2] Abd-Alla MH., 2016, EC Bacteriology and Virology Research's, P131
  • [3] Microbial cell factories for the sustainable manufacturing of B vitamins
    Acevedo-Rocha, Carlos G.
    Gronenberg, Luisa S.
    Mack, Matthias
    Commichau, Fabian M.
    Genee, Hans J.
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2019, 56 : 18 - 29
  • [4] New biotechnological applications for Ashbya gossypii: Challenges and perspectives
    Aguiar, Tatiana Q.
    Silva, Rui
    Domingues, Lucilia
    [J]. BIOENGINEERED, 2017, 8 (04) : 309 - 315
  • [5] Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications
    Aguiar, Tatiana Q.
    Silva, Rui
    Domingues, Lucilia
    [J]. BIOTECHNOLOGY ADVANCES, 2015, 33 (08) : 1774 - 1786
  • [6] Cre-loxP-based system for removal and reuse of selection markers in Ashbya gossypii targeted engineering
    Aguiar, Tatiana Q.
    Dinis, Claudia
    Domingues, Lucilia
    [J]. FUNGAL GENETICS AND BIOLOGY, 2014, 68 : 1 - 8
  • [7] Althofer H., 2005, Patent, Patent No. [US2005/0239161A1, 20050239161]
  • [8] The association of Alu repeats with the generation of potential AU-rich elements (ARE) at 3′ untranslated regions. -: art. no. 97
    An, HJ
    Lee, D
    Lee, KH
    Bhak, J
    [J]. BMC GENOMICS, 2004, 5 (1)
  • [9] [Anonymous], 2010, OJ L
  • [10] Overlapping riboflavin supply pathways in bacteria
    Antonio Garcia-Angulo, Victor
    [J]. CRITICAL REVIEWS IN MICROBIOLOGY, 2017, 43 (02) : 196 - 209