Effects of temperature change and tree species composition on N2O and NO emissions in acidic forest soils of subtropical China

被引:14
|
作者
Cheng, Yi [1 ]
Wang, Jing [2 ]
Wang, Shenqiang [1 ]
Cai, Zucong [2 ]
Wang, Lei [3 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Geog Sci, Nanjing 210046, Jiangsu, Peoples R China
[3] Nanjing Inst Environm Sci, Minist Environm Protect, Nanjing 210042, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
N2O; NO; temperature; broad-leaved forest; coniferous forest; MICROBIAL COMMUNITY STRUCTURE; EASTERN TIBETAN PLATEAU; NITROUS-OXIDE EMISSIONS; NITRIFICATION RATES; BOREAL FOREST; GAS EMISSIONS; ISLE-ROYALE; MINERALIZATION; DEPOSITION; MOISTURE;
D O I
10.1016/S1001-0742(13)60450-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tree species and temperature change arising from seasonal variation or global warming are two important factors influencing N2O and NO emissions from forest soils. However, few studies have examined the effects of temperatures (5-35 degrees C) on the emissions of forest soil N2O and NO in typical subtropical region. A short-term laboratory experiment was carried out to investigate the influence of temperature changes (5-35 degrees C) on soil N2O and NO emissions under aerobic conditions in two contrasting (broad-leaved and coniferous) subtropical acidic forest types in China. The results showed that the temporal pattern of N2O and NO emissions between the three lower temperatures (5 degrees C, 15 degrees C, and 25 degrees C) and 35 degrees C was significantly different for both broad-leaved and coniferous forest soils. The effects of temperature on soil N2O and NO emission rates varied between broad-leaved and coniferous forest soils. Both N2O and NO emissions increased exponentially with an increase in temperature in the broad-leaved forest soil. However, N2O and NO emissions in the coniferous forest soil were not sensitive to temperature change between 5 degrees C and 25 degrees C. N2O and NO emission rates were significantly higher in the broad-leaved forest soil as compared with the coniferous forest soil at all incubation temperatures except 5 degrees C. These results suggest that the broad-leaved forest could contribute more N2O and NO emissions than the coniferous forest for most of the year in the subtropical region of China.
引用
收藏
页码:617 / 625
页数:9
相关论文
共 50 条
  • [11] Temperature effects on N2O production pathways in temperate forest soils
    Zhang, Yi
    Wang, Jing
    Dai, Shenyan
    Sun, Yongquan
    Chen, Ji
    Cai, Zucong
    Zhang, Jinbo
    Mueller, Christoph
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 691 : 1127 - 1136
  • [12] Inventories of N2O and NO emissions from European forest soils
    Kesik, M
    Ambus, P
    Baritz, R
    Brüggemann, NB
    Butterbach-Bahl, K
    Damm, M
    Duyzer, J
    Horváth, L
    Kiese, R
    Kitzler, B
    Leip, A
    Li, C
    Pihlatie, M
    Pilegaard, K
    Seufert, G
    Simpson, D
    Skiba, U
    Smiatek, G
    Vesala, T
    Zechmeister-Boltenstern, S
    BIOGEOSCIENCES, 2005, 2 (04) : 353 - 375
  • [13] Effects of tree species composition on the CO2 and N2O efflux of a Mediterranean mountain forest soil
    Diaz-Pines, Eugenio
    Schindlbacher, Andreas
    Godino, Marina
    Kitzler, Barbara
    Jandl, Robert
    Zechmeister-Boltenstern, Sophie
    Rubio, Agustin
    PLANT AND SOIL, 2014, 384 (1-2) : 243 - 257
  • [14] Effects of tree species composition on the CO2 and N2O efflux of a Mediterranean mountain forest soil
    Eugenio Díaz-Pinés
    Andreas Schindlbacher
    Marina Godino
    Barbara Kitzler
    Robert Jandl
    Sophie Zechmeister-Boltenstern
    Agustín Rubio
    Plant and Soil, 2014, 384 : 243 - 257
  • [15] Effects of Changing Temperature on Gross N Transformation Rates in Acidic Subtropical Forest Soils
    Dan, Xiaoqian
    Chen, Zhaoxiong
    Dai, Shenyan
    He, Xiaoxiang
    Cai, Zucong
    Zhang, Jinbo
    Muller, Christoph
    FORESTS, 2019, 10 (10):
  • [16] Effects of soil moisture on gross N transformations and N2O emission in acid subtropical forest soils
    Yi Cheng
    Jing Wang
    Shen-Qiang Wang
    Jin-Bo Zhang
    Zu-Cong Cai
    Biology and Fertility of Soils, 2014, 50 : 1099 - 1108
  • [17] Effects of soil moisture on gross N transformations and N2O emission in acid subtropical forest soils
    Cheng, Yi
    Wang, Jing
    Wang, Shen-Qiang
    Zhang, Jin-Bo
    Cai, Zu-Cong
    BIOLOGY AND FERTILITY OF SOILS, 2014, 50 (07) : 1099 - 1108
  • [18] Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions
    K. Butterbach-Bahl
    R. Gasche
    L. Breuer
    H. Papen
    Nutrient Cycling in Agroecosystems, 1997, 48 : 79 - 90
  • [19] Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions
    ButterbachBahl, K
    Gasche, R
    Breuer, L
    Papen, H
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 1997, 48 (1-2) : 79 - 90
  • [20] Influence of biological nitrification inhibition by forest tree species on soil denitrifiers and N2O emissions
    Florio, A.
    Marechal, M.
    Legout, A.
    des Chatelliers, C. Creuse
    Gervaix, J.
    Didier, S.
    Zeller, B.
    Le Roux, X.
    SOIL BIOLOGY & BIOCHEMISTRY, 2021, 155