On parallel complexity of analytic functions

被引:2
作者
Yu, Fuxiang
Ko, Ker-I [1 ,2 ]
机构
[1] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu, Taiwan
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah 21413, Saudi Arabia
关键词
Complexity; Analytic functions; Logarithmic space; NC; Derivatives; Integration; Zero-finding; COMPUTATIONAL-COMPLEXITY; REAL FUNCTIONS; DIVISION; ZEROS;
D O I
10.1016/j.tcs.2013.04.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the parallel complexity of analytic functions. We investigate the complexity of computing the derivatives, integrals, and zeros of NC or logarithmic-space computable analytic functions, where NC denotes the complexity class of sets acceptable by polynomial-size, polylogarithmic-depth, uniform Boolean circuits. It is shown that the derivatives and integrals of NC (or logarithmic-space) computable analytic functions remain NC (or, respectively, logarithmic-space) computable. We also study the problem of finding all zeros of an NC computable analytic function inside an NC computable Jordan curve, and show that, under a uniformity condition on the function values on the Jordan curve, all zeros can be found in NC. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 25 条
  • [1] A VERY HARD LOG-SPACE COUNTING CLASS
    ALVAREZ, C
    JENNER, B
    [J]. THEORETICAL COMPUTER SCIENCE, 1993, 107 (01) : 3 - 30
  • [2] [Anonymous], 2000, COMPUTING ZEROS ANAL
  • [3] [Anonymous], 1974, APPL COMPUTATIONAL C
  • [4] [Anonymous], 2000, WIL INT S D
  • [5] LOG DEPTH CIRCUITS FOR DIVISION AND RELATED PROBLEMS
    BEAME, PW
    COOK, SA
    HOOVER, HJ
    [J]. SIAM JOURNAL ON COMPUTING, 1986, 15 (04) : 994 - 1003
  • [6] Uniform computational complexity of the derivatives of C∞-functions
    Bläser, M
    [J]. THEORETICAL COMPUTER SCIENCE, 2002, 284 (02) : 199 - 206
  • [7] FAST PARALLEL MATRIX AND GCD COMPUTATIONS
    BORODIN, A
    GATHEN, JV
    HOPCROFT, J
    [J]. INFORMATION AND CONTROL, 1982, 52 (03): : 241 - 256
  • [8] SOLUTION OF EQUATIONS INVOLVING ANALYTIC-FUNCTIONS
    CARPENTIER, MP
    DOSSANTOS, AF
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 45 (02) : 210 - 220
  • [9] Division in logspace-uniform NC
    Chiu, A
    Davida, G
    Litow, B
    [J]. RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 2001, 35 (03): : 259 - 275
  • [10] COMPUTATIONAL-COMPLEXITY OF 2-DIMENSIONAL REGIONS
    CHOU, AW
    KO, KI
    [J]. SIAM JOURNAL ON COMPUTING, 1995, 24 (05) : 923 - 947