AN ERROR ANALYSIS OF GALERKIN PROJECTION METHODS FOR LINEAR SYSTEMS WITH TENSOR PRODUCT STRUCTURE
被引:10
作者:
Beckermann, Bernhard
论文数: 0引用数: 0
h-index: 0
机构:
UST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, FranceUST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, France
Beckermann, Bernhard
[1
]
Kressner, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
EPF Lausanne, MATHICSE, ANCHP, CH-1015 Lausanne, SwitzerlandUST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, France
Kressner, Daniel
[2
]
Tobler, Christine
论文数: 0引用数: 0
h-index: 0
机构:
EPF Lausanne, MATHICSE, ANCHP, CH-1015 Lausanne, SwitzerlandUST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, France
Tobler, Christine
[2
]
机构:
[1] UST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, France
Recent results on the convergence of a Galerkin projection method for the Sylvester equation are extended to more general linear systems with tensor product structure. In the Hermitian positive definite case, explicit convergence bounds are derived for Galerkin projection based on tensor products of rational Krylov subspaces. The results can be used to optimize the choice of shifts for these methods. Numerical experiments demonstrate that the convergence rates predicted by our bounds appear to be sharp.
引用
收藏
页码:3307 / 3326
页数:20
相关论文
共 32 条
[1]
ANTOULAS A. C., 2005, ADV DES CONTROL, DOI 10.1137/1.9780898718713
机构:
UST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, FranceUST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, France
机构:
UST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, FranceUST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, France