Infinitely many solutions of some nonlinear variational equations

被引:44
作者
Candela, Anna Maria [1 ]
Palmieri, Giuliana [1 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
关键词
CRITICAL-POINTS; MULTIPLE SOLUTIONS; FUNCTIONALS; EXISTENCE;
D O I
10.1007/s00526-008-0193-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is investigating the existence of one or more critical points of a family of functionals which generalizes the model problem (J) over bar (u) = integral(Omega) (S) over bar (x. u) vertical bar del u vertical bar(p) dx - integral(Omega) G(x, u)dx in the Banach space W(0)(1,p) (Omega) boolean AND L(infinity) (Omega) a bounded domain in R(N). In order to use "classical" theorems, a suitable variant of condition ( C) is proved and W(0)(1,p) (Omega) is decomposed according to a "good" sequence of finite dimensional subspaces.
引用
收藏
页码:495 / 530
页数:36
相关论文
共 21 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[3]  
[Anonymous], 1989, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, DOI DOI 10.1007/978-3-642-51440-1
[4]  
[Anonymous], 1995, Topol. Methods Nonlinear Anal.
[5]  
[Anonymous], 1986, CBMS REG C SER MATH
[6]   Critical points for multiple integrals of the calculus of variations [J].
Arcoya, D ;
Boccardo, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 134 (03) :249-274
[7]   Existence of critical points for some noncoercive functionals [J].
Arcoya, D ;
Boccardo, L ;
Orsina, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (04) :437-457
[8]   Some remarks on critical point theory for nondifferentiable functionals [J].
Arcoya, David ;
Boccardo, Lucio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01) :79-100
[9]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[10]   EXISTENCE OF BOUNDED SOLUTIONS FOR NON-LINEAR ELLIPTIC UNILATERAL PROBLEMS [J].
BOCCARDO, L ;
MURAT, F ;
PUEL, JP .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 152 :183-196