Anomaly Detection in Small-Scale Industrial and Household Appliances

被引:1
作者
Zangrando, Niccolo [1 ]
Herrera, Sergio [1 ]
Koukaras, Paraskevas [2 ,4 ]
Dimara, Asimina [2 ,5 ]
Fraternali, Piero [1 ]
Krinidis, Stelios [2 ,3 ]
Ioannidis, Dimosthenis [2 ]
Tjortjis, Christos [4 ]
Anagnostopoulos, Christos-Nikolaos [5 ]
Tzovaras, Dimitrios [2 ]
机构
[1] Politecn Milan, I-20133 Milan, Italy
[2] Ctr Res & Technol, Informat Technol Inst, Thessaloniki 57001, Greece
[3] Int Hellen Univ, Dept Management Sci & Technol, Kavala, Greece
[4] Int Hellen Univ, Sch Sci & Technol, Kavala 57001, Greece
[5] Univ Aegean, Dept Cultural Technol & Commun, Intelligent Syst Lab, Mitilini, Greece
来源
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2022 IFIP WG 12.5 INTERNATIONAL WORKSHOPS | 2022年 / 652卷
关键词
Anomaly detection; Time series analysis; Machine learning; Deep learning;
D O I
10.1007/978-3-031-08341-9_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is concerned with identifying rare events/observations that differ substantially from the majority of the data. It is considered an important task in the energy sector to enable the identification of non-standard device conditions. The use of anomaly detection techniques in small-scale residential and industrial settings can provide useful insights about device health, maintenance requirements, and downtime, which in turn can lead to lower operating costs. There are numerous approaches for detecting anomalies in a range of application scenarios such as prescriptive appliance maintenance. This work reports on anomaly detection using a data set of fridge power consumption that operates on a near zero energy building scenario. We implement a variety of machine and deep learning algorithms and evaluate performances using multiple metrics. In the light of the present state of the art, the contribution of this work is the development of a inference pipeline that incorporates numerous methodologies and algorithms capable of producing high accuracy results for detecting appliance failures.
引用
收藏
页码:229 / 240
页数:12
相关论文
共 36 条
[11]  
Ding Z., 2013, IFAC Proc. Volumes, V46, P12, DOI DOI 10.3182/20130902-3-CN-3020.00044
[12]   Aircraft engine fault detection based on grouped convolutional denoising autoencoders [J].
Fu, Xuyun ;
Luo, Hui ;
Zhong, Shisheng ;
Lin, Lin .
CHINESE JOURNAL OF AERONAUTICS, 2019, 32 (02) :296-307
[13]  
Guo Y., 2018, PMLR, P97
[14]  
Hawkins Douglas M., 1980, IDENTIFICATION OUTLI, V11
[15]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[16]  
Hossein Moayedi Z, 2008, INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS, P2792
[17]   Unsupervised Online Anomaly Detection on Multivariate Sensing Time Series Data for Smart Manufacturing [J].
Hsieh, Ruei-Jie ;
Chou, Jerry ;
Ho, Chih-Hsiang .
2019 IEEE 12TH CONFERENCE ON SERVICE-ORIENTED COMPUTING AND APPLICATIONS (SOCA 2019), 2019, :90-97
[18]  
Idé T, 2006, LECT NOTES ARTIF INT, V4213, P211
[19]   Introducing a novel approach in one-step ahead energy load forecasting [J].
Koukaras, Paraskevas ;
Bezas, Napoleon ;
Gkaidatzis, Paschalis ;
Ioannidis, Dimosthenis ;
Tzovaras, Dimitrios ;
Tjortjis, Christos .
SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2021, 32
[20]   A Tri-Layer Optimization Framework for Day-Ahead Energy Scheduling Based on Cost and Discomfort Minimization [J].
Koukaras, Paraskevas ;
Gkaidatzis, Paschalis ;
Bezas, Napoleon ;
Bragatto, Tommaso ;
Carere, Federico ;
Santori, Francesca ;
Antal, Marcel ;
Ioannidis, Dimosthenis ;
Tjortjis, Christos ;
Tzovaras, Dimitrios .
ENERGIES, 2021, 14 (12)