The Lu system is a particular case of the Lorenz system

被引:30
作者
Algaba, Antonio [1 ]
Fernandez-Sanchez, Fernando [2 ]
Merino, Manuel [1 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Dept Matemat, Ctr Invest Fis Teor & Matemat FIMAT, Huelva 21071, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, ETS Ingn, Seville 41092, Spain
关键词
Lorenz system; Lu system; Local bifurcation; Periodic orbit; Invariant algebraic surface; Chaotic attractor; CODIMENSION-2 BAUTIN BIFURCATION; INVARIANT ALGEBRAIC-SURFACES; SILNIKOV-TYPE ORBITS; CHAOTIC SYSTEM; HETEROCLINIC ORBITS; HOPF-BIFURCATION; ADAPTIVE SYNCHRONIZATION; GLOBAL DYNAMICS; SHILNIKOV TYPE; ATTRACTOR;
D O I
10.1016/j.physleta.2013.08.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Between the so-called Lorenz-like systems, the Lu system, <(x)over dot> = a(y - x), <(y)over dot> = cy - xz, <(z)over dot> = -bz + xy, has attracted great interest in the last decade. In this Letter we show that, generically (c not equal 0), there is a homothetic transformation which converts the Lu system into the Lorenz system and, therefore, all the dynamical behavior exhibited by the Lu system is also present in the Lorenz system. Consequently, all the results obtained in the papers devoted to the study of the Lu system can be trivially derived from the corresponding results on the Lorenz system. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2771 / 2776
页数:6
相关论文
共 92 条
[1]   Chaos synchronization of Lu dynamical system [J].
Agiza, HN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (1-2) :11-20
[2]  
Algaba A., 2006, J MATH ANAL AP UNPUB, V323, P844
[3]   Comments on 'Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces' [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 266 :80-82
[4]   Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family", P. Yu, XX Liao, SL Xie, YL Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (03) :758-761
[5]   Chen's attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
CHAOS, 2013, 23 (03)
[6]   On Darboux polynomials and rational first integrals of the generalized Lorenz system [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (03) :317-322
[7]   Comment on Silnikov-type orbits of Lorenz-family systems' [Physica A 375 (2007) 438-446] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (19) :4252-4257
[8]   Comment on "Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system" [J. Math. Anal. Appl. 315 (2006) 106-119] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (01) :99-101
[9]   Comment on "Heteroclinic orbits in Chen circuit with time delay" [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3058-3066] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2708-2710
[10]   Comment on "Sil'nikov chaos of the Liu system" [Chaos 18, 013113 (2008)] [J].
Algaba, Antonio ;
Fernandez-Sanchez, Fernando ;
Merino, Manuel ;
Rodriguez-Luis, Alejandro J. .
CHAOS, 2011, 21 (04)