Monte Carlo simulation of ionic conductivity in polyethylene oxide

被引:1
作者
Cheang, Pei Ling [1 ]
Yap, Yee Ling [1 ]
Teo, Lay Lian [1 ]
Wong, Eng Kiong [1 ]
You, Ah Heng [1 ]
Hanapei, Hisham [2 ]
机构
[1] Multimedia Univ, Fac Engn & Technol, Ctr Adv Mat & Green Technol, Jalan Ayer Keroh Lama 75450, Malaysia, Malaysia
[2] Telekom Malaysia Innovat Ctr, Telekom Res & Dev, Lingkaran Teknokrat Timu 63000, Cyberjaya Selan, Malaysia
关键词
filler; ionic conductivity; Monte Carlo; polyethylene xide; transference number; POLYMER ELECTROLYTES; TRANSPORT-PROPERTIES; MODEL;
D O I
10.1515/polyeng-2013-0147
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A Monte Carlo (MC) model to incorporate the effect of Al-2 O-3 with different particle sizes in enhancing the ionic conductivity of composite polymer electrolytes consisting of polyethylene oxide (PEO), lithium trifluoromethanesulfonate (LiCF 3 SO 3), and ethylene carbonate (EC), is proposed. The simulated ionic conductivity in our MC model is validated by the results of electrochemical impedance spectroscopy, which determined the room temperature ionic conductivity of various composite electrolyte samples differing from the size of the Al-2 O-3 prepared via the solution cast method. With the simulated current density and recurrence relation, cation transference numbers, t + si of composite polymer electrolytes were derived using the steady-state current method proposed by Bruce et al. Addition of Al-2 O-3 (= <= 10 mu m) in micron size greatly enhances the ionic conductivity to a magnitude of two orders, i. e., from 2.9025 x 10(-7) S/cm to 2.970 x 10(-5) S/cm and doubles the cation transference number from 0.230 to 0.465. However, the addition of Al-2 O-3 (< 50 nm) in nano size decreases both the ionic conductivity and the cation transference number. The smaller size of Al-2 O-3 in the nano range is responsible for the congestion on the conducting pathways that traps some of the Li+ in PEO electrolytes.
引用
收藏
页码:713 / 719
页数:7
相关论文
共 50 条
  • [31] A Monte Carlo simulation of the Bernoulli principle
    Mohazzabi, P
    Bernhardt, MD
    PHYSICA A, 1996, 233 (1-2): : 153 - 162
  • [32] Monte Carlo simulation of a nephelometric experiment
    Marakis, JG
    Brenner, G
    Durst, F
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (05) : 989 - 998
  • [33] COMMENT ON REVERSE MONTE CARLO SIMULATION
    Evans, R.
    MOLECULAR SIMULATION, 1990, 4 (06) : 409 - 411
  • [34] Equilibrium simulation: Monte Carlo method
    Lopez-Castillo, Alejandro
    de Souza Filho, Jose Candido
    QUIMICA NOVA, 2007, 30 (07): : 1759 - 1762
  • [35] Development of fast Monte Carlo simulation
    Maki, A
    Bonen, A
    Koizumi, H
    OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF TISSUE III, PROCEEDINGS OF, 1999, 3597 : 20 - 25
  • [36] Monte Carlo simulation of the enantioseparation process
    Bustos, V. A.
    Acosta, G.
    Gomez, M. R.
    Pereyra, V. D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (18) : 4389 - 4396
  • [37] Monte Carlo Simulation of the Neurofilament Brush
    Jeong, SeongMin
    Zhou, Xin
    Zhulina, Ekaterina B.
    Jho, YongSeok
    ISRAEL JOURNAL OF CHEMISTRY, 2016, 56 (08) : 599 - 606
  • [38] Monte Carlo simulation in Fourier space
    Troester, Andreas
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (1-3) : 30 - 33
  • [39] MONTE-CARLO SIMULATION ON MICROCOMPUTERS
    UYENO, D
    SIMULATION, 1992, 58 (06) : 418 - 423
  • [40] Monte Carlo Simulation for the Game of Domino
    Moreno Montiel, Benjamin
    Moreno Montiel, Carlos Hiram
    Alfaro Perez, Jonathan Ignacio
    Dominguez Sanchez, Gustavo Fernando
    MacKinney Romero, Rene
    COMPUTACION Y SISTEMAS, 2020, 24 (04): : 1369 - 1385