Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

被引:71
作者
Epstein, Alexander K. [1 ]
Hong, Donggyoon [1 ]
Kim, Philseok [1 ,2 ]
Aizenberg, Joanna [1 ,2 ,3 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[3] Harvard Univ, Kavli Inst Bionano Sci & Technol, Cambridge, MA 02138 USA
关键词
BACTERIAL COLONIES; ADHESION; RESISTANCE; SETTLEMENT; MODEL;
D O I
10.1088/1367-2630/15/9/095018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s(-1)), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to similar to 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and similar to 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than similar to 5 min between strain cycles and a topography length scale corresponding to the cell dimension of similar to 1 mu m. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.
引用
收藏
页数:13
相关论文
共 39 条
[1]   Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms [J].
Banerjee, Indrani ;
Pangule, Ravindra C. ;
Kane, Ravi S. .
ADVANCED MATERIALS, 2011, 23 (06) :690-718
[2]   Cooperative organization of bacterial colonies: From genotype to morphotype [J].
Ben-Jacob, E ;
Cohen, I ;
Gutnick, DL .
ANNUAL REVIEW OF MICROBIOLOGY, 1998, 52 :779-806
[3]   Physico-chemistry of initial microbial adhesive interactions - its mechanisms and methods for study [J].
Bos, R ;
van der Mei, HC ;
Busscher, HJ .
FEMS MICROBIOLOGY REVIEWS, 1999, 23 (02) :179-230
[4]   Use of the atomic force microscope to determine the effect of substratum surface topography on bacterial adhesion [J].
Boyd, RD ;
Verran, J ;
Jones, MV ;
Bhakoo, M .
LANGMUIR, 2002, 18 (06) :2343-2346
[5]   ROLE OF PEDICELLARIAE IN PREVENTING BARNACLE SETTLEMENT ON SEA-URCHIN TEST [J].
CAMPBELL, AC ;
RAINBOW, PS .
MARINE BEHAVIOUR AND PHYSIOLOGY, 1977, 4 (04) :253-260
[6]   Bacterial biofilms: A common cause of persistent infections [J].
Costerton, JW ;
Stewart, PS ;
Greenberg, EP .
SCIENCE, 1999, 284 (5418) :1318-1322
[7]   Battling biofilms - The war is against bacterial colonies that cause some of the most tenacious infections known. The weapon is knowledge of the enemy's communication system [J].
Costerton, JW ;
Stewart, PS .
SCIENTIFIC AMERICAN, 2001, 285 (01) :74-81
[8]   Understanding biofilm resistance to antibacterial agents [J].
Davies, D .
NATURE REVIEWS DRUG DISCOVERY, 2003, 2 (02) :114-122
[9]   Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry [J].
Epstein, A. K. ;
Hochbaum, A. I. ;
Kim, Philseok ;
Aizenberg, J. .
NANOTECHNOLOGY, 2011, 22 (49)
[10]   Liquid-infused structured surfaces with exceptional anti-biofouling performance [J].
Epstein, Alexander K. ;
Wong, Tak-Sing ;
Belisle, Rebecca A. ;
Boggs, Emily Marie ;
Aizenberg, Joanna .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (33) :13182-13187